

Georgia Power Company 241 Ralph McGill Blvd NE

Atlanta, Georgia 30308

2021 SEMIANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT

PLANT HAMMOND ASH POND 4 (AP-4)

Prepared by

engineers | scientists | innovators

1255 Roberts Boulevard, Suite 200 Kennesaw, Georgia 30144

Project Number GW6581

February 2022

Geosyntec consultants

CERTIFICATION STATEMENT

This 2021 Semiannual Groundwater Monitoring and Corrective Action Report, Plant Hammond – Ash Pond 4 (AP-4) has been prepared in compliance with the United States Environmental Protection Agency Coal Combustion Residual Rule [40 Code of Federal Regulations 257 Subpart D] and the Georgia Environmental Protection Division Rules for Solid Waste Management 391-3-4-.10 by a qualified groundwater scientist or engineer with Geosyntec Consultants.

Whitney Law
Georgia Professional Engineer No. 36641

<u>February 28, 2022</u>

Date

SUMMARY

This summary of the 2021 Semiannual Groundwater Monitoring and Corrective Action Report provides the status of groundwater monitoring and corrective action program for the reporting period of July through December 2021(referred herein as) at the Georgia Power Company (Georgia Power) Plant Hammond Ash Pond 4 (AP-4) (the Site). This summary was prepared by Geosyntec Consultants, Inc. (Geosyntec) on behalf of Georgia Power to meet the requirements listed in Georgia Environmental Protection Division (GA EPD) Rules for Solid Waste Management 391-3-4-.10, and by reference, Part A, Section 6¹ of the United States Environmental Protection Agency (USEPA) Coal Combustion Residual Rule (federal CCR Rule) (40 Code of Federal Regulations [CFR] 257 Subpart D).

Plant Hammond is located at 5963 Alabama Highway SW, approximately 10 miles west of Rome in Floyd County, Georgia. Plant Hammond is a four-unit, coalfired electric generating facility. All four units at Plant Hammond were decommissioned in July 2019 and no longer produce electricity. Dry ash stacking operations in AP-4 began in 1994 and continued

Plant Hammond and the Site

until 2010; AP-4 received both fly ash and bottom ash during this period. AP-4 was closed in 2012; therefore, AP-4 is not subject to the Federal monitoring requirements, however, the GA EPD monitoring requirements incorporates by reference the Federal regulations on this matter². As such, the federal CCR Rule is referenced in lieu of the GA EPD CCR regulations when discussing aspects of the groundwater monitoring program established for the Site. The Site is located on the western portion of the Plant Hammond property. The GA EPD approved Closure permit No. 057-025D(CCR) for AP-4 on January 27, 2021. Georgia Power plans to perform closure by removal of CCR from AP-4.

Groundwater at the Site is monitored using a comprehensive monitoring network that meets federal and state monitoring requirements. Groundwater monitoring-related

 $^{^{1}\,80\,}FR\,21468,\,Apr.\,17,\,2015,\,as\,amended\,at\,81\,FR\,51807,\,Aug.\,5,\,2016;\,83\,FR\,36452,\,July\,30,\,2018;\,85\,FR\,53561,\,Aug.\,28,\,2020$

² GA EPD Rules for Solid Waste Management 391-3-4-.10(6)(a)

activities have been performed at AP-4 since August 2016 in support of establishing the detection monitoring program for the CCR unit in accordance with § 257.94. During the reporting period, the Site remained in assessment monitoring.

During the reporting period, Geosyntec conducted one groundwater sampling event in August 2021. Groundwater samples were submitted to Pace Analytical Services, LLC, for analysis. Per the federal CCR Rule, groundwater data for the August 2021 event were evaluated in accordance with the certified statistical methods. That evaluation identified statistically significant values of Appendix III³ and Appendix IV⁴ constituents in excess of state groundwater protection standards in select monitoring wells, as summarized in the table below.

Based on review of the Appendix III and Appendix IV statistical results completed for the reporting period, the Site will continue in assessment monitoring. Georgia Power submitted an Alternate Source Demonstration (ASD) to GA EPD on October 28, 2021, to address the SSL of cobalt reported for HGWC-117. Georgia Power will continue routine groundwater monitoring and reporting at the Site. Reports will be posted to Georgia Power's CCR Rule Compliance website and provided to GA EPD semiannually.

Appendix III Constituent	August 2021					
Boron	HGWC-101, HGWC-102, HGWC-103, HGWC-105, HGWC-107, HGWC-109, HGWC-117, HGWC-118					
Calcium	HGWC-102, HGWC-103, HGWC-105, HGWC-118					
Chloride	HGWC-103					
рН	HGWC-101, HGWC-102					
Sulfate	HGWC-101, HGWC-102, HGWC-103, HGWC-105, HGWC-107, HGWC-109, HGWC-117, HGWC-118					
Total Dissolved Solids	HGWC-102, HGWC-103, HGWC-105, HGWC-118					
Appendix IV Constituent ⁵	August 2021					
Cobalt	HGWC-117					

³ Boron, calcium, chloride, fluoride, pH, sulfate, and total dissolved solids (TDS)

⁴ Antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, fluoride, lead, lithium, mercury, molybdenum, selenium, thallium, and radium 226 + 228

⁵ A state statistically significant level (SSL)-related constituent is determined by comparing the confidence intervals developed to either the constituent's maximum contaminant level (MCL), if available, or the calculated background interwell tolerance limit.

TABLE OF CONTENTS

SUM	MAR'	Y	ii
1.0	INT	TRODUCTION	1
	1.1	Site Description and Background	1
	1.2	Regional Geology and Hydrogeologic Setting	2
		1.2.1 Regional and Site Geology	2
		1.2.2 Hydrogeologic Setting	3
	1.3	Groundwater Monitoring Well Network	3
2.0	GRO	OUNDWATER MONITORING ACTIVITIES	4
	2.1	Monitoring Well Installation and Maintenance	4
	2.2	Assessment Monitoring	4
	2.3	Additional Groundwater Sampling	5
3.0	SAN	MPLING METHODOLOGY AND ANALYSES	6
	3.1	Groundwater Level Measurement	6
	3.2	Groundwater Gradient and Flow Velocity	6
	3.3	Groundwater Sampling Procedures	7
	3.4	Laboratory Analyses	8
	3.5	Quality Assurance and Quality Control Summary	9
4.0	STA	ATISTICAL ANALYSIS	10
	4.1	Statistical Methods	10
		4.1.1 Appendix III Statistical Methods	10
		4.1.2 Appendix IV Statistical Methods	11
	4.2	Statistical Analyses Results	11
5.0	ALT	TERNATE SOURCE DEMONSTRATION	13
6.0	MO	ONITORING PROGRAM STATUS	14
7.0	COl	NCLUSIONS AND FUTURE ACTIONS	15
8.0	RFF	FERENCES	16

LIST OF TABLES

Table 1	Monitoring Well Network Summary
Table 2	Groundwater Sampling Event Summary
Table 3	Summary of Groundwater and Surface Water Elevations
Table 4	Horizontal Groundwater Gradient and Flow Velocity Calculations
Table 5	Summary of Groundwater Analytical Data
Table 6	Summary of Background Concentrations and Groundwater Protection
	Standards

LIST OF FIGURES

Figure 1	Site Location Map
Figure 2	Monitoring Well and Surface Water Gauge Location Network Map
Figure 3	Potentiometric Surface Contour Map – August 2021

LIST OF APPENDICES

Appendix A	Well Design, Installation, and Development Report – Addendum
	No. 2, Plant Hammond Ash Pond 4 (AP-4), September 2021
Appendix B	Well Maintenance and Repair Documentation Memorandum
Appendix C	Laboratory Analytical and Field Sampling Reports
Appendix D	Statistical Analysis Report
Appendix E	Alternate Source Demonstration – Cobalt

LIST OF ACRONYMS AND ABBREVIATIONS

AP-4 Ash Pond 4

ASD alternate source demonstration CCR coal combustion residuals CFR Code of Federal Regulations

cm/sec centimeters per second DO dissolved oxygen ft/day feet per day ft/ft feet per foot

GA EPD Georgia Environmental Protection Division

GCL geosynthetic clay liner Georgia Power Georgia Power Company Geosyntec Geosyntec Consultants, Inc. **GSC** Groundwater Stats Consulting **GWPS** Groundwater Protection Standard HAR Hydrogeologic Assessment Report K_h horizontal hydraulic conductivity **MCL** Maximum Contaminant Level

mg/L milligram per liter n_e effective porosity

NELAP National Environmental Laboratory Accreditation Program

NTU nephelometric turbidity units
ORP oxidation-reduction potential
Pace Analytical Pace Analytical Services, LLC.

PE professional engineer
PL prediction limit

QA/QC Quality Assurance/Quality Control

SCS Southern Company Services
SSI statistically significant increase
SSL statistically significant level

s.u. standard unit

TDS total dissolved solids

Unified Guidance Statistical Analysis of Groundwater Data at RCRA Facilities Unified

Guidance

USEPA United States Environmental Protection Agency

1.0 INTRODUCTION

In accordance with the United States Environmental Protection Agency (USEPA) Coal Combustion Residual Rule (federal CCR Rule) [40 Code of Federal Regulations (CFR) Part 257, Subpart D] and the Georgia Environmental Protection Division (GA EPD) Rules for Solid Waste Management 391-3-4-.10, Geosyntec Consultants, Inc. (Geosyntec) has prepared this 2021 Semiannual Groundwater Monitoring and Corrective Action Report to document groundwater monitoring activities conducted at Georgia Power Company (Georgia Power) Plant Hammond (Site) Ash Pond 4 (AP-4) for the reporting period of July through December 2021 (referred to herein as the reporting period).

Groundwater monitoring and reporting for the CCR unit is performed in accordance with the monitoring requirements of the GA EPD Rules for Solid Waste Management 391-3-4-.10(6), but also in accordance with the federal CCR Rule, specifically § 257.90 through § 257.95. To specify groundwater monitoring requirements, GA EPD rule 391-3-4-.10(6)(a) incorporates by reference the federal CCR Rule. For ease of reference, the federal CCR rules are cited within this report, in lieu of citing both sets of regulations.

AP-4 was closed in 2012; therefore, AP-4 is not subject to the Federal monitoring requirements, though GA EPD rule 391-3-4-.10(6)(a) promulgates the groundwater monitoring and corrective action regulations stipulated in the federal CCR Rule § 257.90 through § 257.95. A permit application for AP-4 was submitted to GA EPD in November 2018. GA EPD approved Closure permit No. 057-025D(CCR) for AP-4 on January 27, 2021. Groundwater monitoring has been initiated to meet the GA EPD CCR requirements.

Due to statistically significant increases (SSIs) of Appendix III constituents identified in the 2019 Annual Groundwater Monitoring and Corrective Action Report (Geosyntec, 2019), Georgia Power initiated an assessment monitoring program for AP-4 in August 2019. Since then, Georgia Power has routinely sampled the AP-4 monitoring well network in accordance with the assessment monitoring program as outlined in § 257.95. This report includes the results of the semiannual assessment monitoring event conducted in August 2021.

1.1 <u>Site Description and Background</u>

Plant Hammond is located in Floyd County, Georgia, approximately 10 miles west of Rome and is bordered by Georgia Highway 20 (GA-20) on the north, the Coosa River on

Geosyntec[>]

consultants

the south, Cabin Creek and industrial land on the east, and sparsely populated, forested, rural and industrial land on the west (**Figure 1**). The physical address of the plant is 5963 Alabama Highway, Rome, Georgia, 30165.

Plant Hammond was a four-unit, coal-fired electric generating facility. All four units at Plant Hammond were retired in July 2019 and no longer produce electricity.

AP-4 was commissioned in 1986 as a surface impoundment with a corresponding surface area of approximately 54 acres. Dry ash stacking operations in AP-4 began in 1994 and continued until 2010; AP-4 received both fly ash and bottom ash during this period. AP-4 was capped in place in 2011-2012 in accordance with the GA EPD regulations regarding landfill closures. AP-4 was graded, engineered with drainage, and capped with a geosynthetic clay liner (GCL) and soil cover. Georgia Power plans to perform closure by removal of CCR from AP-4.

1.2 Regional Geology and Hydrogeologic Setting

The following section summarizes the geologic and hydrogeologic conditions at AP-4 as described in the *Hydrogeologic Assessment Report Revision 01 – Ash Pond 4* (HAR Rev 01) submitted to GA EPD under separate cover in support of the AP-4 closure permit application (Geosyntec, 2020).

1.2.1 Regional and Site Geology

The Site is located within the Great Valley District of the Valley and Ridge Physiographic Province (Valley and Ridge) in northwest Georgia. The Valley and Ridge is characterized by Paleozoic sedimentary rocks that have been folded and faulted into the ridges and valleys that gave this region its name. Geologic mapping performed at the Site by Petrologic Solutions, Inc. under the direction of Golder (Golder, 2018) indicates that AP-4 is underlain by the lower units of the Cambrian age Conasauga Formation, consisting of mostly calcareous shale. Based on review of subsurface investigations, the bedrock underneath AP-4 was described as predominantly shale. AP-4 is underlain primarily by five lithologic units: (i) terrace alluvium; (ii) colluvium; (iii) residuum; (iv) partially weathered shale bedrock; and (v) unweathered shale bedrock.

Based on subsurface investigations, the alluvial deposits generally grade from a silt and silty clay to a clayey sand and silty sand to a sand and gravelly sand at depth. The colluvium consists of silty sand, silty clay with the presence of angular fragments of rocks/materials not expected in the lower units of the Conasauga, such as chert, sandstone, limestone, or coal. Residual or native soils have been derived from the in-place

2

Geosyntec >

consultants

weathering of the shale bedrock. The residuum is generally described as brown to yellow brown firm clayey silt with weathered shale fragments. The partially weathered shale zone occurs as an intermediate weathering stage between the residuum and the unweathered shale bedrock. The weathered material is described as black to dark gray to dark red hard, fissile shale and claystone. The unweathered shale bedrock was not encountered or directly observed in the historical borings advanced at AP-4. However, based on geologic conditions in the region, weathering, fracturing and jointing decreases with depth and the weathered rock material grades into competent bedrock.

1.2.2 Hydrogeologic Setting

The uppermost aquifer at AP-4 is a regional groundwater aquifer that occurs primarily in the alluvium, colluvium, and residuum, but also to some degree within the weathered and fractured bedrock. Based on observations of alluvium, colluvium, and residuum soil types and horizontal conductivity values, the movement of groundwater in the soil can be characterized as low-to moderate permeability, porous media flow. The groundwater flow in the shallow underlying bedrock is characterized as fracture flow, and due to the preponderance of shale beneath AP-4, is expected to be very low permeability. Groundwater flow direction is generally from north to south.

1.3 Groundwater Monitoring Well Network

In accordance with § 257.91, a groundwater monitoring system was installed at AP-4 that consists of a sufficient number of wells installed at appropriate locations and depths to yield groundwater samples from the uppermost aquifer to represent the groundwater quality both upgradient of the unit (i.e., background conditions) and passing the waste boundary of the unit. The number, spacing, and depths of the groundwater monitoring wells were selected based on the characterization of site-specific hydrogeologic conditions.

A network of piezometers has been installed at the Site that are used to gauge water levels to define groundwater flow direction and gradients. The locations of the compliance monitoring well network and piezometers associated with AP-4 are shown on **Figure 2**; well construction details are listed in **Table 1**.

2.0 GROUNDWATER MONITORING ACTIVITIES

In accordance with § 257.90(e), the following describes groundwater monitoring-related activities performed during the reporting period and discusses any change in status of the monitoring program. Groundwater sampling was performed in accordance with § 257.93.

2.1 Monitoring Well Installation and Maintenance

One piezometer (HGWC-117A) was installed in July 2021 approximately 30 feet side-gradient of HGWC-117 to evaluate groundwater quality and flow conditions in the vicinity of HGWC-117. A well installation report that includes detailed boring and well construction logs for the installation of HGWC-117A is provided in **Appendix A**. The installation report was submitted to GA EPD under separate cover in September 2021 (Geosyntec, 2021b).

The well and piezometer networks are inspected semiannually to determine if any repairs or corrective actions are necessary to meet the requirements of the Georgia Water Well Standards Act (O.C.G.A. § 12-5-134(5)(d)(vii)). In August 2021, the networks were inspected, necessary corrective actions were identified and subsequently completed, as documented in **Appendix B**. This documentation will serve as the required five year well inspection and was performed under the direction of a professional geologist or engineer registered in the State of Georgia.

2.2 Assessment Monitoring

Georgia Power initiated an assessment monitoring program for groundwater at AP-4 in August 2019. Statistical analyses of the groundwater data from the March 2021 semiannual assessment monitoring event identified a statistically significant level (SSL) of cobalt in compliance well HGWC-117. Details regarding the statistical analyses are provided in the 2021 Annual Groundwater & Corrective Action Monitoring Report (Geosyntec, 2021a). Details of actions taken by Georgia Power subsequent to identifying the SSL are outlined in this current semiannual groundwater monitoring report.

For the current reporting period, the semiannual assessment monitoring event was conducted in August 2021. This event was a combined event to meet the requirements of § 257.95(b) and § 257.95(d)(1) and included sampling and analysis of all Appendix III and IV constituents. The number of groundwater samples collected for analysis and the dates the samples were collected at AP-4 during this reporting period is summarized in

consultants

Table 2. The laboratory reports associated with the August 2021 groundwater sampling event are provided in **Appendix C.**

2.3 Additional Groundwater Sampling

Supplemental groundwater samples were collected from HGWC-117 and HGWC-117A on September 27, 2021, to further evaluate the cobalt SSL identified in HGWC-117. The samples were analyzed for the complete list of Appendix III and Appendix IV constituents. The laboratory report associated with the September 2021 sampling event is provided in **Appendix C**.

3.0 SAMPLING METHODOLOGY AND ANALYSES

The following section presents a summary of the field sampling procedures that were implemented, and the groundwater sampling results that were obtained in connection with the assessment monitoring program conducted at AP-4 during the reporting period.

3.1 Groundwater Level Measurement

A synoptic round of depth-to-groundwater-level measurements was recorded from the AP-4 wells and piezometers during the August 2021 assessment monitoring event and used to calculate the corresponding groundwater elevations, which are presented in **Table 3**. The August 2021 elevations reported are generally representative of the groundwater elevations reported for prior monitoring events.

The groundwater elevation data were used to prepare a potentiometric surface contour map for the August 2021 event, which is presented on **Figure 3**. Groundwater in the AP-4 area flows under the influence of topography from slightly higher ground surface elevations on the northern side of AP-4 toward lower elevations to the south of AP-4 along the Coosa River.

3.2 Groundwater Gradient and Flow Velocity

The groundwater hydraulic gradient within the uppermost aquifer beneath AP-4 was calculated using the groundwater elevation data from the August 2021 event. The hydraulic gradient is commonly calculated between two points along the groundwater flow path perpendicular to groundwater elevation contours. Ideally, this flow path originates and concludes with groundwater elevations reported for two wells, but this may not be feasible and still remain perpendicular to the contours. Given the surface area covered by AP-4, hydraulic gradients were calculated along the eastern, central, and western portions of the unit. The well pairs correlating to these flow areas are, respectively: GWA-14 and HGWC-118; HGWA-113 and HGWC-102; HGWA-111 and HGWC-107. The supporting calculations are presented in **Table 4.** The general trajectory of the flow paths used in the calculations and associated potentiometric contour lines are shown on **Figure 3.** The presented hydraulic gradients from the three portions were averaged for the reporting period to provide a representative gradient of 0.016 feet per foot (ft/ft) across AP-4.

The approximate horizontal flow velocity associated with AP-4 groundwater was calculated using the following derivative of Darcy's Law. The calculations are presented in **Table 4**.

$$V = \frac{K_h * i}{n_e}$$

where:

V= Groundwater flow velocity $\left(\frac{feet}{day}\right)$ $K_h=$ Horizontal Hydraulic Conductivity $\left(\frac{feet}{day}\right)$ i= Horizontal hydraulic gradient $\left(\frac{feet}{foot}\right)=\frac{h_1-h_2}{L}$ h_1 and $h_2=$ Groundwater elevation at location 1 and 2

L =distance between location 1 and 2

 n_e = Effective porosity

Aquifer testing was conducted by Southern Company Services (SCS) in 2013 to evaluate hydraulic conditions in the vicinity of AP-4. Results of these field events are discussed in detail in the HAR Rev 01 (Geosyntec, 2020a). Horizontal hydraulic conductivity (K_h) was estimated for units above the top of bedrock by performing slug tests. The tests were conducted at wells screened in the terrace alluvium or colluvial material; a geometric mean for K_h of 5.86 x 10⁻⁴ centimeters per second (cm/sec) [1.67 feet per day (ft/day)] was calculated from the slug test data for the two units. Since the majority of the wells are screened in either alluvial or alluvial/colluvial materials, no hydraulic conductivity testing was conducted on the residuum, weathered shale, or unweathered shale.

The groundwater flow velocity calculation is performed using the geometric mean for Kh of 1.67 ft/day. An estimated effective porosity (n_e) of 0.15 is used to represent average conditions for the silty clay alluvium/colluvium, derived based on review of literature, observed site lithology, and professional judgement. With these variables assigned, and accounting for the representative hydraulic gradient discussed above, the representative groundwater flow velocity underneath AP-4 was calculated to be 0.18 ft/day for the reporting period.

3.3 Groundwater Sampling Procedures

Groundwater samples were collected from the compliance monitoring network using low-flow sampling procedures in accordance with § 257.93(a). Purging and sampling was performed using dedicated bladder pumps with dedicated tubing, non-dedicated

consultants

bladder pumps, and peristaltic pumps. For wells sampled with non-dedicated bladder pumps and peristaltic pumps, the pump intake was lowered to the midpoint of the well screen (or as appropriate based on the groundwater level). Non-dedicated bladder pump and peristaltic pump samples were collected using new disposable polyethylene tubing; all non-dedicated tubing was disposed of following the sampling event. All non-disposable equipment was decontaminated before use and between well locations.

An in-situ water quality field meter (Aqua TROLL 400) was used to monitor and record field water quality parameters [i.e., pH, conductivity, dissolved oxygen (DO), temperature, and oxidation reduction potential (ORP)] during well purging to verify stabilization prior to sampling. Turbidity was monitored using a LaMotte 2020we (or similar) portable turbidity meter. Groundwater samples were collected once the following stabilization criteria were met:

- pH \pm 0.1 standard units (s.u.).
- Conductivity \pm 5%.
- ± 0.2 milligrams per liter (mg/L) or $\pm 10\%$ (whichever is greater) for DO > 0.5 mg/L. No criterion applies if DO < 0.5 mg/L, record only.
- Turbidity measured less than 5 nephelometric turbidity units (NTU), or measured between 5 and 10 NTU following three hours of purging.

Following purging, and once stabilization was achieved, unfiltered samples were collected into appropriately preserved laboratory-supplied sample containers. Sample bottles were placed in ice-packed coolers and submitted to Pace Analytical Services, LLC. (Pace Analytical) in Norcross, Georgia following chain-of-custody protocol. The field sampling and equipment calibration forms generated during the August 2021 semiannual assessment monitoring event and the September 2021 supplemental sampling of HGWC-117 and HGWC-117A are provided in **Appendix C**.

3.4 <u>Laboratory Analyses</u>

Laboratory analyses were performed by Pace Analytical, which is accredited by the National Environmental Laboratory Accreditation Program (NELAP). Pace Analytical maintains a NELAP certification for the Appendix III and Appendix IV constituents analyzed for this project. Analytical methods used for groundwater sample analysis, and the associated results, are listed in the analytical laboratory reports included in

consultants

Appendix C. The groundwater analytical results from the August and September 2021 sampling events are summarized in **Table 5**.

3.5 Quality Assurance and Quality Control Summary

Quality assurance/quality control (QA/QC) samples were collected during the groundwater monitoring events in accordance with the Site's *Groundwater Monitoring Plan* (Geosyntec, 2021c), and included the following: field duplicates, equipment blanks, and field blank samples. QA/QC samples were collected in appropriately preserved laboratory-provided containers and submitted under the same chain of custody as the primary samples for analysis of the same constituents by Pace Analytical.

In addition to collecting QA/QC samples, the data were validated based on the pertinent methods referenced in the laboratory reports, professional and technical judgment, and applicable federal guidance documents (USEPA, 2011; USEPA, 2017). Where necessary, the data were qualified with supporting documentation and justifications. The data are considered usable for meeting project objectives and the results are considered valid. The associated data validation report is provided in **Appendix C**, along with the laboratory reports.

4.0 STATISTICAL ANALYSIS

The following section summarizes the statistical analysis of Appendix III groundwater monitoring data performed pursuant to § 257.93. In addition, pursuant to § 257.95(d)(2), Georgia Power established groundwater protection standards (GWPS) for the Appendix IV monitoring constituents and completed statistical analyses of the Appendix IV groundwater monitoring data obtained during the monitoring period. The data were analyzed by Groundwater Stats Consulting (GSC); the report generated from the analyses are provided in **Appendix D**.

4.1 Statistical Methods

Groundwater data from the reporting period were statistically analyzed in accordance with the Professional Engineer-certified (PE-certified) Statistical Analysis Method Certification (October 2017, revised January 2020). The Sanitas groundwater statistical software was used to perform the statistical analyses. Sanitas is a decision-support software package, that incorporates the statistical tests required of Subtitle C and D facilities by USEPA regulations and guidance as recommended in the USEPA document *Statistical Analysis of Groundwater Data at RCRA Facilities Unified Guidance* (Unified Guidance) (USEPA, 2009).

Appendix III statistical analysis was performed to determine if Appendix III constituents have returned to background levels. Appendix IV constituents were evaluated to determine if concentrations statistically exceeded the established state GWPS. Detailed statistical methods used for Appendix III and Appendix IV constituents are discussed in statistical analysis packages provided in **Appendix D** and summarized in Sections 4.1.1 and 4.1.2. The GWPS were finalized pursuant to § 257.95(d)(2) and presented in **Table 6**.

4.1.1 Appendix III Statistical Methods

Based on guidance from GA EPD, statistical tests used to evaluate the groundwater monitoring data consist of interwell prediction limits (PLs) combined with a 1-of-2 verification resample plan for each of the Appendix III constituents. Interwell PLs pool upgradient well data to establish a background limit for an individual constituent, and the most recent sample from each downgradient well is compared to the same limit for each constituent. The most recent sample from each downgradient well is compared to the background limit to determine whether there are SSIs. An "initial exceedance" occurs when an Appendix III constituent reported in the groundwater of a downgradient

consultants

compliance monitoring well exceeds the constituent's associated PL. The 1-of-2 resample plan allows for collection of an independent resample. A confirmed exceedance is noted only when the resample confirms the initial exceedance by also exceeding the statistical limit. If the resample falls within its respective prediction limit, no exceedance is declared.

4.1.2 Appendix IV Statistical Methods

To statistically compare groundwater data to GWPS, confidence intervals are constructed for each of the detected Appendix IV constituents in each downgradient compliance monitoring well with a minimum of four samples. In accordance with Section 21.1.1 of the Unified Guidance (USEPA, 2009), four independent data are the minimum population size recommended to construct confidence intervals required to assess SSL for Appendix IV constituents. Those confidence intervals are compared to the state GWPS. Only when the entire confidence interval is above a GWPS is the well/constituent pair considered to exceed its GWPS. If a confidence interval exceeds a GWPS, an SSL exceedance is identified.

As described in the GA EPD CCR Rule, the GWPS is:

- (1) The federally established MCL.
- (2) Where an MCL has not been established, the background concentration.
- (3) Background levels for constituents where the background level is higher than the MCL.

USEPA revised the federal CCR Rule on July 30, 2018, specifying GWPS for cobalt, lead, lithium, and molybdenum as described in § 257.95(h)(2). Presently, those rule-specified GWPS have not yet been incorporated into the current GA EPD Rules for Solid Waste Management 391-3-4-.10(6)(a).

Following the above state rule requirements, GWPS have been established for statistical comparison of Appendix IV constituents and are presented in **Table 6**.

4.2 Statistical Analyses Results

Based on review of the statistical analyses presented in Appendix D, Appendix III constituents continue to exceed background PLs for the August 2021 assessment

Geosyntec >

consultants

monitoring event. Pursuant to § 257.95(f), assessment monitoring should continue based on these statistical results.

Statistical analysis of the August 2021 data continued to identify an SSL of cobalt above the state GWPS (0.005 mg/L) in HGWC-117. As discussed below in Section 5, Georgia Power submitted an ASD to GA EPD in October 2021 that outlined multiple lines of evidence that the SSL is not associated with a release from AP-4. Pursuant to § 257.95(g), a groundwater exceedance notification acknowledging the SSL of cobalt and submission of the ASD was placed in the Operating Record on January 31, 2022.

5.0 ALTERNATE SOURCE DEMONSTRATION

An Alternate Source Demonstration (ASD) was prepared and submitted to GA EPD on October 28, 2021, to address the SSL of cobalt reported for HGWC-117 (Geosyntec, 2021d). The ASD presented multiple lines of evidence that the SSL is not associated with a release from AP-4, but is instead an isolated occurrence unrelated to the unit, and may have been affected by pump/sampling issues. A Pearson correlation coefficient analysis of available groundwater data for HGWC-117 did not identify statistically significant positive correlations between cobalt concentrations and concentrations of Appendix III constituents; if cobalt were to originate from CCR, it should have statistically significant positive correlations with the Appendix III indicator constituents to indicate a similar source of solutes. Additionally, to evaluate groundwater quality in vicinity of HGWC-117 and assess the cobalt SSL, HGWC-117A was installed approximately 30 ft sidegradient to HGWC-117 and screened in the same lithology. The cobalt groundwater concentrations reported for samples collected in August and September 2021 from HGWC-117A were estimated (i.e., 0.0024 J mg/L [Aug 2021], 0.0011 J mg/L [Sep 2021]) below the reporting limit and the GWPS of 0.005 mg/L. Based on the data presented in the ASD, Georgia Power will monitor HGWC-117A in parallel with HGWC-117 during routine groundwater sampling events. Once sufficient data are available to statistically evaluate groundwater conditions at HGWC-117A, HGWC-117A may replace HGWC-117, if appropriate, as the new compliance well. The ASD is provided in **Appendix E**.

6.0 MONITORING PROGRAM STATUS

Based on the statistical evaluation results presented for the reporting period, SSIs of Appendix III constituents have not returned to background levels; and therefore, Georgia Power will continue to monitor groundwater at AP-4 in accordance with the assessment monitoring program regulations of § 257.95.

Statistical analyses of the compiled AP-4 groundwater data identified an SSL of cobalt in HGWC-117 following the March 2021 semiannual monitoring event. As discussed in Section 5, an ASD was submitted to GA EPD in October 2021 addressing the SSL.

7.0 CONCLUSIONS AND FUTURE ACTIONS

This 2021 Semiannual Groundwater Monitoring and Corrective Action Report for Plant Hammond AP-4 was prepared to fulfill the requirements of the GA EPD Rules for Solid Waste Management 391-3-4-.10, and indirectly by reference the federal CCR Rule. Statistical analyses of the groundwater monitoring data for AP-4 for the reporting period identified the continued presence of an SSL of cobalt above the associated state GWPS (0.005 mg/L) in HGWC-117.

To address the SSL, Georgia Power prepared and submitted an ASD to GA EPD within 90 days of the initial posting of the Groundwater Exceedance Notification, dated July 30, 2021. The ASD presented multiple lines of evidence that the SSL is not associated with a release from AP-4, but instead is an isolated occurrence, relative to the other AP-4 monitoring wells, and may have been affected by pump/sampling issues unrelated to the unit. Based on the data presented in the ASD, Georgia Power proposes to monitor newly installed side-gradient piezometer HGWC-117A in parallel to HGWC-117 during routine groundwater sampling events. Once sufficient data are available for HGWC-117A to statistically evaluate groundwater conditions in this area, HGWC-117A may replace HGWC-117, if appropriate, as the new compliance well.

Georgia Power will continue to monitor groundwater in accordance with the assessment monitoring program as specified in § 257.95. The next assessment monitoring event for AP-4 is scheduled for February 2022. The February 2022 semiannual assessment monitoring event will include sampling and analysis of all Appendix III and IV constituents.

8.0 REFERENCES

- Geosyntec, 2019. 2019 Annual Groundwater Monitoring & Corrective Action Report Georgia Power Company, Plant Hammond Ash Pond 4 (AP-4). July 2019.
- Geosyntec, 2020. Hydrogeologic Assessment Report (Revision 01) Ash Pond 4 (AP-4), Plant Hammond. May 2020.
- Geosyntec, 2021a. 2021 Annual Groundwater Monitoring and Corrective Action Report
 Plant Hammond Ash Pond 4 (AP-4). July 2021.
- Geosyntec, 2021b. 2021 Well Design, Installation, and Development Report Addendum No. 2 Plant Hammond Ash Pond 4 (AP-4). September 2021.
- Geosyntec, 2021c. Groundwater Monitoring Plan, Pland Hammond Ash Pond 4 (AP-4), Floyd County, Georgia. September 2020, revised September 2021 (minor permit mod).
- Geosyntec, 2021d. *Alternate Source Demonstration Cobalt, Georgia Power Company, Plant Hammond Ash Pond 4.* October 2021.
- Golder, 2018. *Geologic and Hydrogeologic Report Plant Hammond*. November 2018.
- SanitasTM: Groundwater Statistical Software, v. 9.6.05, 2018. Sanitas Technologies©, Boulder, CO.
- USEPA, 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance. Office of Resource Conservation and Recovery Program Implementation and Information Division. March 2009.
- USEPA, 2011. *Region* IV *Data Validation Standard Operating Procedures*. Science and Ecosystem Support Division. Region IV. Athens, GA. September 2011.
- USEPA, 2017. *National Functional Guidelines for Inorganic Superfund Methods Data Review*. Office of Superfund Remediation and Technology Innovation. OLEM 9355.0-135 [EPA-540-R-2017-001]. Washington, DC. January 2017.

TABLES

Table 1Monitoring Well Network Summary
Plant Hammond AP-4, Floyd County, Georgia

Well ID	Hydraulic Location	Installation Date	Northing (1)	Easting (1)	Ground Surface Elevation (ft)	Top of Casing Elevation (2) (ft)	Top of Screen Elevation ⁽²⁾ (ft)	Bottom of Screen Elevation ⁽²⁾ (ft)	Well Depth (ft BTOC) (3)	Screen Interval Length (ft)
Compliance Monitoring Well	l									
HGWA-47	Upgradient	8/21/2020	1548990.96	1934171.84	577.39	580.33	546.84	536.84	43.74	10
HGWA-48D	Upgradient	8/20/2020	1548989.39	1934178.15	577.29	580.26	517.54	507.54	72.97	10
HGWA-111	Upgradient	8/21/2012	1548834.26	1935222.81	588.79	591.75	558.48	548.48	43.67	10
HGWA-112	Upgradient	8/21/2012	1548885.63	1935647.00	593.46	596.27	566.52	556.52	40.15	10
HGWA-113	Upgradient	10/2/2012	1548944.62	1935990.09	592.07	594.58	568.87	558.87	36.11	10
HGWC-101	Downgradient	8/7/2012	1547725.50	1936369.58	575.91	578.85	551.31	541.31	37.94	10
HGWC-102	Downgradient	8/7/2012	1547713.50	1936033.33	574.54	577.54	550.51	540.51	37.43	10
HGWC-103	Downgradient	8/8/2012	1547848.88	1935732.96	577.76	580.79	553.51	543.51	37.68	10
HGWC-105	Downgradient	8/8/2012	1547855.56	1935110.36	579.08	582.09	547.72	537.72	44.67	10
HGWC-107	Downgradient	8/8/2012	1547909.99	1934442.24	576.43	579.31	551.51	541.51	38.20	10
HGWC-109	Downgradient	8/15/2012	1548627.41	1934362.77	573.66	576.77	555.81	545.81	31.36	10
HGWC-117	Downgradient	8/14/2012	1548100.77	1937180.43	579.31	581.98	552.12	542.12	40.26	10
HGWC-118	Downgradient	10/1/2012	1547980.56	1936946.37	576.52	579.02	548.51	538.51	40.91	10
Piezometer										
MW-12	Downgradient	10/21/2014	1547853.78	1937525.46	580.59	583.27	555.84	545.84	37.83	10
HGWC-117A	Downgradient	7/21/2021	1548082.04	1937157.25	578.85	581.76	551.85	541.85	37.40	10
GWC-4	Downgradient	8/8/2012	1547898.31	1935398.70	577.73	580.65	543.47	533.47	47.58	10
GWC-6	Downgradient	8/13/2012	1547843.93	1934800.45	578.55	581.63	553.90	543.90	38.13	10
GWC-8	Downgradient	8/9/2012	1548167.13	1934342.94	577.13	579.99	549.47	539.47	40.92	10
GWA-14	Upgradient	10/2/2012	1548982.59	1936642.58	589.70	592.14	561.40	551.40	41.14	10
GWA-15	Upgradient	8/22/2012	1548766.17	1936808.47	588.37	591.56	571.44	561.44	30.52	10
GWA-16	Upgradient	8/21/2012	1548592.74	1937210.99	579.58	582.55	569.94	559.94	23.01	10
GWC-19	Downgradient	8/14/2012	1547892.89	1936572.97	576.90	579.83	554.04	544.04	36.19	10

ft = feet

ft BTOC = feet below top of casing

- (1) Coordinates in North American Datum (NAD) 1983, State Plane, Georgia-West, feet. Survey completed by GEL Solutions dated May 11, 2020, September 10, 2020 (for wells HGWA-47 and HGWA-48D), and September 8, 2021 (for well HGWC-117A).
- (2) Elevations referenced to the North American Vertical Datum of 1988 (NAVD88). Survey completed by GEL Solutions dated May 11, 2020, September 10, 2020 (for wells HGWA-47 and HGWA-48D), and September 8, 2021 (for well HGWC-117A).
- (3) Total well depth accounts for sump if data provided on well construction logs.

Table 2Groundwater Sampling Event Summary
Plant Hammond AP-4, Floyd County, Georgia

Well ID	Hydraulic Location	August 12 - 19, 2021	September 27, 2021	
Purpose of	Sampling Event:	Assessment	Supplemental	
HGWA-47	Upgradient	X		
HGWA-48D	Upgradient	X		
HGWA-111	Upgradient	X		
HGWA-112	Upgradient	X		
HGWA-113	Upgradient	X		
HGWC-101	Downgradient	X		
HGWC-102	Downgradient	X		
HGWC-103	Downgradient	X		
HGWC-105	Downgradient	X		
HGWC-107	Downgradient	X		
HGWC-109	Downgradient	X		
HGWC-117	Downgradient	X	X	
HGWC-117A	Downgradient	X	X	
HGWC-118	Downgradient	X		

Table 3
Summary of Groundwater and Surface Water Elevations
Plant Hammond AP-4, Floyd County, Georgia

	T. 6.C.	August 1	11, 2021		
Well ID	Top of Casing Elevation (1) (ft)	Depth to Water (ft BTOC)	Groundwater Elevations (ft)		
Compliance Monitorii	ng Well				
HGWA-47	580.33	8.24	572.09		
HGWA-48D	580.26	8.13	572.13		
HGWA-111	591.75	12.12	579.63		
HGWA-112	596.27	12.34	583.93		
HGWA-113	594.58	9.66	584.92		
HGWC-101	578.85	12.66	566.19		
HGWC-102	577.54	12.71	564.83		
HGWC-103	580.79	12.85	567.94		
HGWC-105	582.09	17.51	564.58		
HGWC-107	579.31	14.82	564.49		
HGWC-109	576.77	8.42	568.35		
HGWC-117	581.98	16.44	565.54		
HGWC-118	579.02	13.02	566.00		
Piezometer					
MW-12	583.27	18.35	564.92		
HGWC-117A	581.76	16.22	565.54		
GWC-4	580.65	12.62	568.03		
GWC-6	581.63	16.91	564.72		
GWC-8	579.99	13.15	566.84		
GWA-14	592.14	6.49	585.65		
GWA-15	591.56	9.93	581.63		
GWA-16	582.55	4.68	577.87		
GWC-19	579.83	12.32	567.51		
Surface Water Level (Gauge Point				
Unnamed Creek	580.14	15.13	565.01		

-- = not applicable

ft = feet

ft BTOC = feet below top of casing

(1) Elevations referenced to the North American Vertical Datum of 1988 (NAVD88). Survey completed by GEL Solutions dated May 10, 2020, September 10, 2020 (for wells HGWA-47 and HGWA-48D), and September 8, 2021 (for well HGWC-117A).

Table 4
Horizontal Groundwater Gradient and Flow Velocity Calculations
Plant Hammond AP-4, Floyd County, Georgia

	August 11, 2021						
Flow Path Direction (1)	h ₁ (ft)	h ₂ (ft)	L (ft)	i (ft/ft)	Average i (ft/ft)		
Eastern Flow Path (GWA-14 to HGWC-118)	585.65	566.00	1,075	0.018			
Central Flow Path (HGWA-113 to HGWC-102)	584.92	564.83	1,235	0.016	0.016		
Western Flow Path (HGWA-111 to HGWC-107)	579.63	564.49	1,210	0.013			

Flow Path Direction (1)	K _h (ft/day)	n _e	Average i (ft/ft)	V (ft/day) ⁽²⁾
Eastern Flow Path (GWA-14 to HGWC-118)				
Central Flow Path (HGWA-113 to HGWC-102)	1.67	0.15	0.016	0.18
Western Flow Path (HGWA-111 to HGWC-107)				

ft = feet

ft/day = feet per day

ft/ft = feet per foot

 h_1 and h_2 = groundwater elevation at location 1 and 2

 $i = h_1 - h_2/L = horizontal hydraulic gradient$

 K_h = horizontal hydraulic conductivity

L = distance between location 1 and 2 along the flow path

 n_e = effective porosity

V = groundwater flow velocity

- (1) Flow path direction relative to the orientation of AP-4 and illustrated on Figures 3 of associated report.
- (2) Groundwater flow velocity equation: $V = [K_h * i] / n_e$.

Table 5 Summary of Groundwater Analytical Data Plant Hammond AP-4, Floyd County, Georgia

	Well ID:	HGWA-47	HGWA-48D	HGWA-111	HGWA-112	HGWA-113	HGWC-101	HGWC-102	HGWC-103	HGWC-105	HGWC-107	HGWC-109	HGWC-117	HGWC-117	HGWC-117A	HGWC-117A	HGWC-118
	Sample Date:	8/12/2021	8/12/2021	8/12/2021	8/12/2021	8/12/2021	8/16/2021	8/13/2021	8/16/2021	8/13/2021	8/13/2021	8/13/2021	8/19/2021	9/27/2021	8/12/2021	9/27/2021	8/13/2021
	Parameter (1,2)																
	Boron	< 0.0086	0.012 J	< 0.0086	< 0.0086	< 0.0086	0.13	2.4	3.2	1.2	0.73	0.24	0.78	0.67	0.34	0.30	0.59
_	Calcium	71.2	59.5	45.4	6.9	8.4	22.8	119	124	102	57.8	43.5	40.9	37.5	50.7	47.2	84.3
X III	Chloride	2.3	2.2	2.5	4.4	1.5	5.4	6.0	10.4	3.7	3.1	4.0	4.0	3.4	6.3	4.5	4.0
ENDIX	Fluoride	< 0.050	0.064 J	< 0.050	< 0.050	0.16	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	0.086 J	< 0.050	< 0.050	< 0.050	< 0.050	0.075 J
APPE	pH ⁽³⁾	7.38	7.44	6.67	5.50	6.08	5.40	5.45	5.59	6.44	6.11	6.71	6.04	5.66	6.27	6.14	6.78
- ■	Sulfate	1.4	4.3	1.3	< 0.50	10.0	72.1	248	354	142	112	24.4	108	104	64.6	69.7	75.1
	TDS	212	234	157	63.0	92.0	206	647	672	441	291	189	253	242	256	223	336
	Antimony	< 0.00078	< 0.00078	< 0.00078	< 0.00078	< 0.00078	< 0.00078	< 0.00078	< 0.00078	< 0.00078	< 0.00078	< 0.00078	< 0.00078	< 0.00078	< 0.00078	< 0.00078	< 0.00078
	Arsenic	< 0.0011	0.0013 J	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	0.0019 J	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011
	Barium	0.028	0.10	0.029	0.028	0.033	0.037	0.026	0.037	0.073	0.033	0.080	0.041	0.038	0.079	0.062	0.043
	Beryllium	< 0.000054	< 0.000054	< 0.000054	< 0.000054	< 0.000054	< 0.000054	< 0.000054	< 0.000054	< 0.000054	< 0.000054	< 0.000054	0.000056 J	< 0.000054	< 0.000054	< 0.000054	< 0.000054
	Cadmium	< 0.00011	< 0.00011	< 0.00011	< 0.00011	< 0.00011	0.00015 J	0.00069	0.00081	< 0.00011	< 0.00011	< 0.00011	0.0012	0.00098	0.00016 J	< 0.00011	< 0.00011
>	Chromium	< 0.0011	< 0.0011	< 0.0011	0.0041 J	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011
IX IV	Cobalt	< 0.00039	< 0.00039	< 0.00039	< 0.00039	< 0.00039	0.0026 J	0.00085 J	0.0022 J	< 0.00039	< 0.00039	0.0011 J	0.017	0.015	0.0024 J	0.0011 J	< 0.00039
ENDIX	Fluoride	< 0.050	0.064 J	< 0.050	< 0.050	0.16	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	0.086 J	< 0.050	< 0.050	< 0.050	< 0.050	0.075 J
APPE	Lead	< 0.00089	< 0.00089	< 0.00089	< 0.00089	< 0.00089	< 0.00089	< 0.00089	< 0.00089	< 0.00089	< 0.00089	< 0.00089	< 0.00089	<0.00089	< 0.00089	< 0.00089	< 0.00089
- ■	Lithium	0.0029 J	0.0037 J	0.0020 J	< 0.00073	0.00094 J	< 0.00073	0.0011 J	0.0016 J	0.0038 J	0.00084 J	< 0.00073	0.0017 J	0.0016 J	0.0036 J	0.0035 J	0.0017 J
	Mercury	0.000081 J	0.00018 J	< 0.000078	0.00011 J	< 0.000078	0.000099 J	0.00010 J	0.00027	0.00022	0.000084 J	0.000080 J	0.00030	< 0.000078	0.000094 J	< 0.000078	0.000081 J
	Molybdenum	< 0.00074	0.0019 J	< 0.00074	< 0.00074	< 0.00074	< 0.00074	< 0.00074	< 0.00074	< 0.00074	< 0.00074	< 0.00074	< 0.00074	< 0.00074	< 0.00074	< 0.00074	< 0.00074
	Comb. Radium 226/228	0.462 U	0.274 U	0.532 U	0.223 U	0.312 U	0.667 U	0.828 U	0.493 U	0.513 U	0.815 U	0.794 U	0.155 U	0.905	0.124 U	1.05 U	0.228 U
	Selenium	< 0.0014	< 0.0014	< 0.0014	< 0.0014	0.0023 J	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014
	Thallium	< 0.00018	< 0.00018	< 0.00018	< 0.00018	< 0.00018	< 0.00018	< 0.00018	< 0.00018	< 0.00018	< 0.00018	< 0.00018	< 0.00018	< 0.00018	< 0.00018	< 0.00018	< 0.00018

< = Indicates the parameter was not detected above the analytical method detection limit (MDL).

J = Indicates the parameter was estimated and detected between the MDL and the reporting limit (RL).

TDS = Total dissolved solids

U = Indicates the parameter was not detected above the analytical minimum detectable concentration (MDC) (Specific to combined radium 226/228).

⁽¹⁾ Appendix III/IV parameter per 40 CFR 257 Subpart D. Parameters are reported in units of milligrams per liter (mg/L), except for pH reported as s.u. (standard units) and combined radium reported as picocuries per liter (pCi/L). (2) Metals were analyzed by EPA Method 6010D, 6020B and 7470A, anions were analyzed by EPA Method 300.0, TDS was analyzed by SM2540C, and combined radium by EPA Methods 9315/9320.

⁽³⁾ The pH value presented was recorded at the time of sample collection in the field.

Table 6
Summary of Background Concentrations and Groundwater Protection Standards
Plant Hammond AP-4, Floyd County, Georgia

Analyte	Units	Background ⁽¹⁾	State GWPS ⁽²⁾
Antimony	mg/L	0.003	0.006
Arsenic	mg/L	0.005	0.01
Barium	mg/L	0.100	2
Beryllium	mg/L	0.002	0.004
Cadmium	mg/L	0.0005	0.005
Chromium	mg/L	0.01	0.1
Cobalt	mg/L	0.005	0.005
Fluoride	mg/L	0.17	4
Lead	mg/L	0.002	0.0016
Lithium	mg/L	0.03	0.03
Mercury	mg/L	0.0002	0.002
Molybdenum	mg/L	0.01	0.01
Selenium	mg/L	0.005	0.05
Thallium	mg/L	0.001	0.002
Combined Radium-226/228	pCi/L	1.36	5

mg/L = milligrams per liter

pCi/L = picocuries per liter

- 1. The background limits were used when determining the groundwater protection standard (GWPS) under 40 CFR §257.95(h) and Georgia Environmental Protection Division (GA EPD) Rule 391-3-4-.10(6)(a).
- 2. Under the existing GA EPD rules, the GWPS is: (i) the maximum contaminant level (MCL); (ii) where the MCL is not established, the background concentration; or (iii) background concentrations for constituents where the background level is higher than the MCL.

FIGURES

APPENDIX A

Well Design, Installation and Development Report – Addendum No. 2, Plant Hammond Ash Pond 4 (AP-4), September 2021

Georgia Power Company

241 Ralph McGill Blvd NE Atlanta, Georgia 30308

WELL DESIGN, INSTALLATION, AND DEVELOPMENT REPORT – ADDENDUM

No.2

PLANT HAMMOND ASH POND 4
(AP-4)

Prepared by

engineers | scientists | innovators

1255 Roberts Boulevard, Suite 200 Kennesaw, Georgia 30144

Project Number GW6581

September 2021

WELL DESIGN, INSTALLATION, AND DEVELOPMENT REPORT – ADDENDUM No. 2

Plant Hammond Ash Pond 4 September 17, 2021

Whitney Law, P.E. Georgia Professional Engineer No. 36641 Project Manager Geosyntec Consultants

TABLE OF CONTENTS

1								
2								
2								
2								
2								
3								
3								
4								
4								
5								
SURVEY								
7								

LIST OF ACRONYMS

AP Ash Pond

ASTM American Society for Testing and Materials

CCR coal combustion residual CFR Code of Federal Regulations

CFS Civil Field Services
DO dissolved oxygen

GA EPD Georgia Environmental Protection Division

Georgia Power Company
NAD Georgia Power Company
North America Datum

NAVD North American Vertical Datum NSF National Sanitation Foundation ORP oxygen reduction potential

PVC polyvinyl chloride

SCS Southern Company Services

TOC top of casing

US EPA United States Environmental Protection Agency

1. INTRODUCTION

This report provides details regarding the design, installation, and development of one groundwater monitoring well to supplement the current groundwater monitoring system at Georgia Power Company (Georgia Power) Plant Hammond (Site) Ash Pond 4 (AP-4). The report was prepared as an addendum to previously submitted well design, installation, development and decommissioning reports issued for the Site (ERM, 2017, Geosyntec 2020), and meets the requirements promulgated in the United States Environmental Protection Agency (US EPA) coal combustion residual (CCR) rule [40 Code of Federal Regulations (CFR) Part 257, Subpart D], specifically 40 CFR §257.91(e)(1) and Georgia Environmental Protection Division (GA EPD) Rules for Solid Waste Management 391-3-4-.10.

Plant Hammond is located in Floyd County, approximately 10 miles west of Rome, Georgia. The current groundwater monitoring system at AP-4 includes 13 wells associated with the CCR compliance monitoring well network and a network of secondary groundwater monitoring wells and groundwater level monitoring piezometers. The locations of these wells and piezometers are shown on **Figure 1**.

1

2. DRILLING AND WELL INSTALLATION

Well installation and development activities were performed according to accepted industry standards and following guidelines within the *Manual for Groundwater Monitoring* (GA EPD, 1991). Well drilling, installation, and surface completion activities were performed by Southern Company Services (SCS) Civil Field Services (CFS) of Birmingham, Alabama. In accordance with the Georgia Water Well Standards Act, the driller was required to have an insurance bond on file with the State of Georgia at the time of drilling. A copy of this bond is provided in **Appendix A**. A geologist under the supervision of a professional geologist (PG) registered to practice in the State of Georgia, both of whom are employed with Geosyntec Consultants (Geosyntec), documented the drilling and installation efforts to record observations, soil and rock descriptions, subsurface stratigraphy, water elevations, and other field activities. Geosyntec was also responsible for the development of the newly installed well.

This report presents the details for the installation and development of AP-4 well HGWC-117A. The location of this well is shown in **Figure 1**. Well construction details are provided in **Table 1**; boring and well construction logs are included in **Appendix B**.

2.1 Drilling Method

The borehole was advanced using hollow stem auger drilling techniques. A Geoprobe 7822DT drill rig with 6 ¼ - inch (outer diameter) augers was used to install the well. Split-spoon samples were collected using a combination of continuous and 5-foot centered intervals. Split spoons were used for the sole purpose of sample collection. Care was taken so that the drilling method did not introduce potential contamination from surface activities to the groundwater.

2.2 Screened Interval

Details regarding the well screen interval are provided in **Table 1**. The well is screened in the uppermost water bearing unit of the Site. HGWC-117A is screened from approximately 551.85 to 541.85 feet (referenced to the North American Vertical Datum of 1988). HGWC-117A is constructed with a 10 foot well screen segment.

2.3 Well Casing and Screen

The well was constructed of 2-inch inner diameter Schedule 40 polyvinyl chloride (PVC) casing with flush-threaded fittings. The well was installed with a 10-foot nominal length pre-packed dual-wall well screen with 0.010-inch slots. The casing and pre-packed

screen arrived pre-cleaned and packaged by the manufacturer. The pre-packed well screen was constructed onsite by packing sand between slotted PVC and the well screen. Well construction materials are sufficiently durable to resist chemical and physical degradation and not interfere with the quality of groundwater samples. Casing and screens are flush-threaded. Solvent or glue was not used to construct the well. A threaded bottom cap was attached to the bottom of the screen. The PVC products used were American Society for Testing and Materials (ASTM) and National Sanitation Foundation (NSF) rated. Well screen interval details are provided in **Table 1**.

2.4 Well Intake Design

The well was designed and constructed to: (1) allow sufficient groundwater flow to the well for sampling; (2) minimize the passage of formation materials (turbidity) into the well; and (3) ensure sufficient structural integrity to prevent collapse of the well. The annular space between the face of the formation and the screen was filled to minimize passage of formation materials into the well. A filter pack of clean, well-rounded, quartz sand was installed in the well. The 0.01-inch slot size was selected to minimize the inflow of formation material without impairing influent groundwater flow.

2.5 <u>Filter Pack</u>

Highly Pure Quartzite of Consolidated Aggregates Co. silica sand filter pack was used as the appropriate gradation for the well. The filter pack meets the ASTM D5092 uniformity coefficient specification of 2.5 or less, with a uniformity coefficient of 1.6.

Filter pack material was placed within the pre-packed dual-wall well screen and in the annular space between the outside of the pre-pack screen and borehole wall to ensure an adequate thickness of filter pack material between the well and the formation. Filter pack material placed in the annular space outside of the well screen extended approximately 2 feet above the top of screen. No bridging occurred during filter pack placement.

Upon placement of the filter pack, the well was pumped with a submersible pump to assure settlement of the filter pack. The top of filter pack depth was measured following pumping to ensure appropriate extension of filter sand above the screen. The depth of top of filter pack was measured and recorded on the well construction log provided in **Appendix B**.

2.6 Annular Seal

A minimum of two feet of bentonite chips (PelPlug time-release-coated 3/8-inch bentonite pellets) were placed immediately above the filter pack by gravity-pouring into the annular space and hydrated per manufacture's specifications. A tremie pipe was used to probe the annular space to ensure that no bridging occurred The bentonite was hydrated with potable water for a duration meeting the manufacture's specifications prior to grouting the remaining annulus.

The annulus above the bentonite seal was grouted with AquaGuard bentonite grout placed via tremie pipe and direct pour methods from the top of the bentonite seal. During grouting, care was taken to assure that the bentonite seal was not disturbed by locating the base of the tremie pipe approximately 2 feet above the bentonite seal and injecting grout at low pressure/velocity. A cement apron 4-feet by 4-feet by 4-inches was poured around the well. The pad was mounded slightly outward to direct surface drainage away from the well.

2.7 Cap and Protective Casing

The well riser was fitted with a locking cap and a lockable cover. A ¼-inch vent hole was drilled into the PVC riser pipe to provide an avenue for the escape of gas. The protective cap guards the casing from damage and the locking cap serves as a security device to prevent well tampering. Bollards were installed around the four corners of the concrete pad to protect the well.

A weep hole was drilled in the outer protective casing near the bottom above the concrete pad. Pea gravel was placed inside the protective casing between the riser pipe and the outer casing. The well was clearly marked with the proper well identification number on the stand-up casing. Construction details are documented on the well construction log provided in **Appendix B**.

3. WELL DEVELOPMENT

The well was developed using a combination of surging and pumping to (1) restore the natural hydraulic conductivity of the formation, and (2) to remove fine-grained sediment to ensure low-turbidity groundwater samples. The well was alternately surged and purged until visually clear of particulates. Turbidity, pH, temperature, conductivity, oxidation-reduction potential (ORP), and dissolved oxygen (DO) measurements were recorded to ensure that the well was fully developed. The well development field form is included in **Appendix C**.

4. SURVEY

Upon completion of the well installation, select horizontal locations and vertical elevations were surveyed by a Georgia-licensed surveyor. The top of the PVC well casing [top of casing (TOC) elevation] and the survey pin installed at the well pad were surveyed to within 0.5-foot horizontal accuracy and to 0.01-foot vertical accuracy. The horizontal location (i.e., northings and eastings) was recorded in feet relative to the North America Datum of 1983 (NAD) with the vertical elevation recorded in feet relative to the North American Vertical Datum of 1988. Certified survey data are provided in the well construction table (**Table 1**). A copy of the certified well survey data for the new well is provided in **Appendix D**.

5. REFERENCES

- Environmental Resources Management (ERM), 2017. Well Design, Installation, Development, and Decommissioning Report Plant Hammond Ash Ponds 1 and 2. October 2017.
- Georgia Environmental Protection Division (GA EPD), Georgia Department of Natural Resources, 1991. *Manual for Groundwater Monitoring*. September 1991.
- Geosyntec Consultants, 2020. Well Design, Installation and Development Report Addendum, Plant Hammond Ash Ponds 4. November 2020.
- United States Environmental Protection Agency. 2015a. Federal Register. Volume 80. No. 74. Friday April 17, 2015. Part II. Environmental Protection Agency. 40 CFR Parts 257 and 261. Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule. [EPA-HQ-RCRA-2009-0640; FRL-9919-44-OSWER]. RIN-2050-AE81, April 2015

TABLE

Table 1 Summary of Well Construction Details Plant Hammond AP-4, Floyd County, Georgia

Well ID	Purpose	Installation Date	Northing (1)	Easting (1)	Ground Surface Elevation (2) (ft NAVD88)	Top of Casing Elevation (ft NAVD88)	Top of Screen Elevation (ft NAVD88)	Bottom of Screen Elevation (ft NAVD88)	Well Depth (ft bgs) ⁽³⁾
HGWC-117A	Piezometer	7/21/2021	1548082.04	1937157.25	578.85	581.76	551.85	541.85	37.40

Notes:

ft bgs = feet below ground surface.

- (1) Coordinates in North American Datum (NAD) 1983, State Plane, Georgia-West, feet. Survey was completed by GEL Solutions and certified September 8, 2021.
- (2) Vertical elevations are referenced to the North American Vertical Datum (NAVD) of 1988. Ground surface elevation defined at the survey nail installed within the well pad. Survey was completed by GEL Solutions and certified September 8,2021.
- (3) Total well depth accounts for 4-inch sump.

FIGURE

APPENDIX A

Well Driller Performance Bonds

CONTINUATION

SAFECO Insurance Company of America

, Surety upon

a certain Bond No. 4993104

dated effective June 30, 1987

(MONTH-DAY-YEAR)

on behalf of Southern Company Services, Inc.

(PRINCIPAL)

and in favor of Georgia Department of Natural Resources, Environmental Protection Division

(OBLIGEE)

does hereby continue said bond in force for the further period

beginning on June 30, 2021

(MONTH-DAY-YEAR)

and ending on June 30, 2022

(MONTH-DAY-YEAR)

Amount of bond Fifteen Thousand Dollars and 00/100 (\$15,000.00)

Description of bond Water Well Contractors & Drillers

Premium: \$100.00

PROVIDED: That this continuation certificate does not create a new obligation and is executed upon the express condition and provision that the Surety's liability under said bond and this and all Continuation Certificates issued in connection therewith shall not be cumulative and that the said Surety's aggregate liability under said bond and this and all such Continuation Certificates on account of all defaults committed during the period (regardless of the number of years) said bond had been and shall be in force, shall not in any event exceed the amount of said bond as hereinbefore set forth.

Signed and dated on

05/06/2021

(MONTH-DAY-YEAR)

SAFECO Insurance Company of America

175 Berkeley Street, Boston, MA 02116

Attorney in-Fact Jeffrey M. Wilson, Attorney-in-Fact

McGriff Insurance Services, Inc.

Agent

2211 7th Avenue South, Birmingham, AL 35233

Address of Agent

(205) 252-9871

Telephone Number of Agent

This Power of Attorney limits the acts of those named herein, and they have no authority to bind the Company except in the manner and to the extent herein stated.

> American States Insurance Company First National Insurance Company of America General Insurance Company of America Safeco Insurance Company of America

Certificate No: 8205019-016032

POWER OF ATTORNEY

KNOWN ALL PERSONS BY THESE PRESENTS: That American States Insurance Company is a corporation duly organized under the laws of the State of Indiana, that First National Insurance Company of America, General Insurance Company of America, and Safeco Insurance Company of America are corporations duly organized under the laws of the State of New Hampshire (herein collectively called the "Companies"), pursuant to and by authority herein set forth, does hereby name, constitute and appoint, Alisa B. Ferris; Anna Childress; Jeffrey M. Wilson; Mark W. Edwards II; Richard H. Mitchell; Robert R. Freel; Sam Audia; William M. Smith

all of the city of	Birmingham	state of	AL	each individually if there be more than one named, its true and lawful attorney-in-fact to make,
execute, seal, acknow	wledge and deliver, for and	d on its behalf as sun	ety and as its act	and deed, any and all undertakings, bonds, recognizances and other surely obligations, in pursuance
of these presents an	d shall be as binding upo	in the Companies as	if they have bee	en duly signed by the president and attested by the secretary of the Companies in their own proper
persons.				
IN WITNESS WHER	EOF, this Power of Attorn	ey has been subscri	bed by an author	ized officer or official of the Companies and the corporate seals of the Companies have been affixed

2021 thereto this 11th day of March

American States Insurance Company First National Insurance Company of America General Insurance Company of America Safeco Insurance Company of America

David M. Carey, Assistant Secretary

State of PENNSYLVANIA County of MONTGOMERY

(POA) verification inquiries, HOSUR@libertymutual.com , 2021 before me personally appeared David M. Carey, who acknowledged himself to be the Assistant Secretary of American States Insurance On this 11th day of March Company, First National Insurance Company of America, General Insurance Company of America, and Safeco Insurance Company of America, and that he, as such, being authorized so Attorney or email to do, execute the foregoing instrument for the purposes therein contained by signing on behalf of the corporations by himself as a duly authorized officer.

IN WITNESS WHEREOF, I have hereunto subscribed my name and affixed my notarial seal at King of Prussia, Pennsylvania, on the day and year first above written

niwealth of Pennsylvania - Notary Sea Toresa Postella, Notary Public Montgomery County
My commission expires March 28, 2025 mission number 1126044 nin Geenciation of Motories

call 610-832-8240 This Power of Attorney is made and executed pursuant to and by authority of the following By-law and Authorizations of American States Insurance Company, First National Insurance Power of Altomey is made and executed pursuant to and by authority of the following By-law and Authorizations or American States insurance company, and the properties of the America, General Insurance Company of America, which are now in full force and effect reading as follows:

ARTICLE IV – OFFICERS: Section 12. Power of Attorney.

Any officer or other official of the Corporation authorized for that purpose in writing by the Chairman or the President, and subject to such limitation as the Chairman or the President, and subject to such limitation as the Chairman or the President, and subject to such limitation as the Chairman or the President, and subject to such limitation as the Chairman or the President, and subject to such limitation as the Chairman or the President, and subject to such limitation as the Chairman or the President, and subject to such limitation as the Chairman or the President, and subject to such limitation as the Chairman or the President, and subject to such limitation as the Chairman or the President, and subject to such limitation as the Chairman or the President, and subject to such limitation as the Chairman or the President, and subject to such limitation as the Chairman or the President of the Corporation to make exercise seal acknowledge and deliver as surely the Chairman or the President of the Corporation to make exercise seal acknowledge and deliver as surely the Chairman or the President of the Corporation to make exercise seal acknowledge and deliver as surely the Chairman or the President of the Corporation to make exercise seal acknowledge and deliver as surely the Chairman or the President of the Corporation to make exercise seal acknowledge and deliver as surely the Chairman or the President of the Chairman or t Company of America, General Insurance Company of America, and Safeco Insurance Company of America, which are now in full force and effect reading as follows:

President may prescribe, shall appoint such attorneys in-fact, as may be necessary to act in behalf of the Corporation to make, execute, seal, acknowledge and deliver as surety any and all undertakings, bonds, recognizances and other surety obligations. Such attorney-in-fact, subject to the limitations set forth in their respective powers of attorney, shall have full power to bind the Corporation by their signature and executed, such instruments shall be as binding as if signed by the President and attested to by the Secretary. Any power or authority granted to any representative or attorney-in-fact under the provisions of this article may be revoked at any time by the Board, the Chairman, the President or by the officer or officers granting such power or authority.

Certificate of Designation - The President of the Company, acting pursuant to the Bylaws of the Company, authorizes David M. Carey, Assistant Secretary to appoint such attorneys-infact as may be necessary to act on behalf of the Company to make, execute, seal, acknowledge and deliver as surely any and all undertakings, bonds, recognizances and other surely obligations.

Authorization - By unanimous consent of the Company's Board of Directors, the Company consents that facsimile or mechanically reproduced signature of any assistant secretary of the Company, wherever appearing upon a certified copy of any power of attorney issued by the Company in connection with surety bonds, shall be valid and binding upon the Company with the same force and effect as though manually affixed.

I, Renee C. Llewellyn, the undersigned, Assistant Secretary, of American States Insurance Company, First National Insurance Company of America. General Insurance Company of America, and Safeco Insurance Company of America do hereby certify that the original power of attorney of which the foregoing is a full, true and correct copy of the Power of Attorney executed by said Companies, is in full force and effect and has not been revoked.

IN TESTIMONY WHEREOF, I have hereunto set my hand and affixed the seals of said Companies this 6th

Renee C. Llewellyn, Assistant Secretary

APPENDIX B

Boring and Well Construction Log

SCS MONITORING WELLS MW-51 AND HGWC-117A GPJ ACP GINT LIBRARY CH.GLB 9/9/2

APPENDIX C

Well Development Forms

· pa										(ef 3	
Geosyntec consultants					WE	LL DEVELOPMEN	T LOG SHEET				
Client:		SCS				Project No.:	GINC	881		Development Date:	7/28/21
Site:		Dlant H	cmmo	nd		Location:	41-	> 4	-	Field Personnel Name:	Mounco lhessl.
Well ID:		1174				Pump Type/Model:	Di	May May	150011		
Total Depth (ft) (after	purge):	40.41		•3		Tubing Material:	Della				
Depth to Water (ft):		15.79		5	Pı	ımp Intake Depth (ft):		4-210	-		
Well Diameter (in):		7				tart/Stop Purge Time:	1 1 1 1 5	8-1876			
Well Volume (gal) = () 041d b:	4.00	125	£3				197 -	2		
Well Volume (L) = ga	2	15		6		Purge Rate (mL/min):		<u>१</u>	=		
				5	10	otal Purge Volume (L)	56		ž.		
d = well diameter (inc		-	ımn (Jeel)								
Well Type		Stick Up									
Well Lock	Yes	No									
Well Cap Condition:	Good	Replace									
Well Tag Present:	Yes	No									
Time	pH (SU)	Spec. Cond. (µS/cm)	ORP (mV)	DO (mg/L)	Temp. (°C)	Turbidity (NTUs)	DTW (ft btoc)	Purge Rate (mL/min)	Purged Volume (L)	Notes (Purge method, wate rate, issues with pump/	
14 728	6.32	398.38	7.951	0.11	21.63	1227	15.75	-6000 8000	0x5	1 purge /surge	2
	6,24	371.55	1131	0.17	19.10	arrange	16.68	Sect savi	5 8xs		
	6.36	400,27	56.4	0.14	19.19	cocost wife	18,35	50000	15 240	1	
	6,36	700:27	1018	0.00	18007	erogenenge	(8/32	3000	12 646	NICONO Pala	e @ 1450
								6000		Dutus loges	@ \$14 B 150
1530	783	1.13	88.9	5 79	212.45	coexinge	16.00	3000	15 30x	Leolica ep	A
1535	6.83	453.75	1476	0.02	19.19	17 18	17.15	3000	# 36X	5	
1546	6.80	456.01	131.4	0.01	18.47	oversurve	17.15	6000	42 KS	purgelsinger	-
1515c	8.57	438.15	88.8	0.03	18.93	7059	16.8	6000	5.4 KS	Vo	
15 55	6,53	477.75	107.7	0.67	18.94	7483	18.56	6000	60 KS	V	
1600	6.55	431,53	107.3	0,01	18.96	1960	16070	6000	66 x5	U	Aa
1605	6.65	44653	109.374		18.07	2451	18,75	6000	72 us		
1616	6.64	476.59	760	0.01	18.47	1594	16.92	6000	34 xs		1
1615	6.60	457.78	100.1	0.01	18.97	1144	18.89	6000	84 KS		·
16 375	6.60	44409	47.6	0.01	42-60	1360	18:00	6000	106 25	Jamp = 191,03	
16 30	4,66	4419.44	100.5	0.61	14.06	117	18.77	6000	117 ms	7-119 - 1103	

< 5 NTUs

0 2 mg/L or 10% for DO > 0.5 mg/L (whichever is greater)

Stabilizing Criteria +/- 0.1 SU

+/- 5%

Geosyntec [▷]	1.0				WE	ELL DEVELOPMEN	T LOG SHEET				
Client:		5C5				Project No.			_	Development Date: 7/	15/85
Site:		Mant	Hamm	ond		Location	AP	-11		Field Personnel Name:	homes thereb
Well ID:		11700				Pump Type/Model:	Mons	(T)M	-	S	
Total Depth (ft) (after	purge):	40,1	1	•		Tubing Material:	146		_		
Depth to Water (ft):			15	\$6	р	ump Intake Depth (ft):			-		
Well Diameter (in)		2		3 1		Start/Stop Purge Time:	11159	8-1820	7.		
Well Volume (gal) = 0	041d bit	4.0	U	•					-		
100000	2	15		-		Purge Rate (mL/min):			-		
Well Volume (L) = ga				S	Te	otal Purge Volume (L)	340	20	-		
d = well diameter (inc			ımn (feet)								
Well Type:	Flush	Stick Up									
Well Lock:	Yes	No									
Well Cap Condition:	Good	Replace									
Well Tag Present:	Yes	No									
Time	pH (SU)	Spec. Cond. (µS/cm)	ORP (mV)	DO (mg/L)	Temp. (°C)	Turbidity (NTUs)	DTW (ft btoc)	Purge Rate (mL/min)	Purged Volume (L)	Notes (Purge method, water cl rate, issues with pump/well	
16 35	6,60	441224	107,21	0.04	19.19	3144	18.30	6000	118 00	Dunes / Suren	- 1
16 110	658	446.29	111.5	50.0	19.06	157	1852	6000	2x PS1	1 - 7 - 7 - 7	
16 45	6.61	441.52	1138	0.07	19.15	179	18:45	6000	130 KS		
16 56	6.75	478.89	1098	20.0	18.97	828	17.45	6000	136 NS		
16 55	6.62	44409	45.7	0.02	18.43	31.9	1810	6000	142 25		
1706	6.50	431.11	18.7	301	13-18-94	135 2144		6000	1418 45		
17 16	6.58	425.77	75.3	0.00	19.01		14,50	6000	160 15	commercer	
1715	655	43696	83.3	0.01	18.92	90 79.0	18.701	6000	166 45	depth = 18.38, P.P.	-6000
1770	6.57	438.88	108.4	Ou	18.94	150	19.50	6000	142 05		
1725	6.57	447.38	1157	0.01	18.91	47.2	19.50	6000	178 5		
1730	657	437.65	170,3	0.01	19.01	447	14.30	6000	184 3		A
1735	(0.60C)	448.35	1708	0.0%	1897	15.0	19,50	60000	190 05		
1726	660	447-61	88.8	0.62	10.97	10.9	14.50	6000	196 ×5		
1745	6.61	460,55	112.8	6.68	18.99	15.7	19.50	6000	\$ (040)		
1756	6.59	44.51	113.7	0.62	18.88	70.7	14.20	Coroco	260 M	- weell	
1755	6.59	441.53	85.7	0.02	18.88	10,9t8,75		6000	210 0	March 1944	continue june
1-860 (20)	Co 58	441283		0.02	18.88	7.68	19.26	Goese	CZ#2"		
IKOS,	6,59	442,42	14117.17	0.62	18.48	41.51	14.50	6000	C28 0		
Stabilizing Criteria	+/- 0.1 SU	+/- 5%		0.2 mg/L or 10% for DO > 0.5 mg/L (whichever is greater)		< 5 NTUs					

										764)
Geosyntec Consultants					WE	LL DEVELOPMEN	T LOG SHEET				
Client		SCS				Project No.	Gue	581		Development Date:	7128317
Site:		Plant	Hamm	iord		Location	AP-L			Field Personnel Name:	Thomas Mossi
Well ID:		M79				Pump Type/Model	徳	Monsson	-	_	
Total Depth (ft) (after	purge):	404				Tubing Material		The second second	-		
Depth to Water (ft):		15.7	5		P	ımp Intake Depth (ft))			
Well Diameter (in)		2			9	start/Stop Purge Time	147	8/1820	7		
Well Volume (gal) = 0	041d,h:	4,00	1			Purge Rate (mL/min)		sec .	-		
Well Volume (L) = ga	1 * 3.785:	15.3				otal Purge Volume (L)		700C)	_		
d = well diameter (inc	hes); h = len	igth of water coli	umn (feet)						_		
Well Type:	Flush	Stick Up									
Well Lock:	Yes	No									
Well Cap Condition:	Good	Replace									
Well Tag Present:	(Yes	No									
Time	pH (SU)	Spec. Cond. (µS/cm)	ORP (mV)	DO (mg/L)	Temp. (°C)	Turbidity (NTUs)	DTW (ft btoc)	Purge Rate (mL/min)	Purged Volume (L)	Notes (Purge method, wat	
18 10	6.59	451.87	118.1	0.03	18.87	4.64	14.85	6000	234 X5		,
15 15	6.59	442.61	84.1	0.03	18.86	435	19 30	6000	240 AS		
18 20	6.59	441.85	81.8	0.03	18.84	7.89	19.30	6000	246 35		ume = 1730L
										one pine	
						1					
						1					
7											
						1					
Stabilizing Criteria	+/- 0.1 SU	+/- 5%		0 2 mg/L or 10% for DO > 0.5 mg/L (whichever is greater		< 5 NTUs					

APPENDIX D

Certified Well Survey Data

Well ID	Casing Northing	Casing Easting	Top of Casing Elevation	Nail or Pad Northing	Nail or Pad Easting	Nail or Pad Elevation	Description
HGWC-117A	1548082.038	1937157.249	581.759	1548080.943	1937157.918	578.849	NAIL ON PAD
							NAIL ON
MW-51	1547872.352	1938421.463	574.541	1547873.517	1938421.451	571.573	PAD
Benchmark	Northing	Easting	Elevation				
BM-H2	1548149.4490	1938960.2220	590.68				
BM-H1	1547964.965	1937219.069	579.02				

SURVEY DATA CERTIFICATION FOR SOUTHERN COMPANY TO DETERMINE NORTHING, EASTING, AND VERTICAL ELEVATION OF THE NAIL IN THE CONCRETE PAD & THE PVC WELL CASING. DATE OF FIELD SURVEY & INSPECTION: 09/07/2021. FIELD SURVEY POSITIONAL TOLERANCE=0.5 FEET HORIZONTAL-NAD'83, 0.01 VERTICAL-NAVD '88. EQUIPMENT USED FOR HORIZONTAL LOCATION: TRIMBLE R10 RTK GPS & TRIMBLE S5 ROBOTIC TOTAL STATION. THE VERTICAL LOCATION OF EACH SURVEYED POINT WAS ESTABLISHED BASED UPON LEVEL RUNS WITH A DIGITAL LEVEL LOOP FROM VERTICAL CONTROL ESTABLISHED BY ON-SITE BENCHMARKS BM-H1 AND BM-H2 SET BY GEL SOLUTIONS USING A TRIMBLE DINI LEVEL

Duk Bak

9/8/2021

COA - LS003119 Exp. 06/30/2022

APPENDIX B

Well Maintenance and Repair Documentation Memorandum

MEMORANDUM

DATE: December 20, 2021

TO: Kristen Jurinko, P.G., Southern Company Services, Inc.

CC: Ben Hodges, P.G., Georgia Power Company

FROM: Geosyntec Consultants

SUBJECT: Plant Hammond Ash Pond 4 (AP-4) - Well Maintenance and Repair

Documentation, Georgia Power Company

Geosyntec Consultants has prepared this memorandum to provide documentation of groundwater monitoring well maintenance and/or repair performed at Plant Hammond AP-4 during the 2021 semiannual reporting period. All repairs and maintenance were completed in accordance with the Georgia Environmental Protection Division (GA EPD) guidance on routine visual inspections of groundwater monitoring wells. Documentation of the well inspections are provided as an attachment to this memorandum.

Georgia Power Site/Unit			Maintenance/ Repair Performed
Hammond/AP-4	8/4/2021	All Wells	Checked and cleared weep holes of debris.

ATTACHMENT

Well Inspection Forms

August 2021

Site Name	Plus Mummones			
Permit Number	- tong to part of	-		
Well ID	Mely Ut- 47	-		
Date, field conditions	OH COULD HOST SUMMER	-		
,	- STITION THE POUNTS	yes	no	n/a
1 Location/I	dentification	,		
a	Is the well visible and accessible?			
b	Is the well properly identified with the correct well ID?			
С	Is the well in a high traffic area and does the well require			
	protection from traffic?			
d	Is the drainage around the well acceptable? (no standing water,			
	nor is well located in obvious drainage flow path)			
	<u> </u>	-		
2 Protective				
а	Is the protective casing free from apparent damage and able to be)		
	secured?	_		
b	Is the casing free of degradation or deterioration?	/		
С	Does the casing have a functioning weep hole?	/		
d	Is the annular space between casings clear of debris and water,			
	or filled with pea gravel/sand?			
е	Is the well locked and is the lock in good condition?			
3 Surface pa	ad			
a <u>Surface pa</u>	Is the well pad in good condition (not cracked or broken)?			
b	Is the well pad sloped away from the protective casing?			
C	Is the well pad in complete contact with the protective casing?			
d	Is the well pad in complete contact with the ground surface and			
ŭ	stable? (not undermined by erosion, animal burrows, and does no	ŧ		
	move when stepped on)			
е	Is the pad surface clean (not covered with sediment or debris)?			
· ·	to the part outlines drout (her covered with bodimont of dobite).			
4 Internal ca	sing			
а	Does the cap prevent entry of foreign material into the well?			
	Is the casing free of kinks or bends, or any obstructions from	/	=======================================	
	foreign objects (such as bailers)?			
	Is the well properly vented for equilibration of air pressure?			
d	Is the survey point clearly marked on the inner casing?			
е	Is the depth of the well consistent with the original well log?		-11	
	Is the casing stable? (or does the pvc move easily when touched			
	or can it be taken apart by hand due to lack of grout or use of slip			
	couplings in construction)			
5 Sampling	Groundwater Wells Only:			
	Does well recharge adequately when purged?	-		
	If dedicated sampling equipment installed, is it in good condition			
	and specified in the approved groundwater plan for the facility?			
	Does the well require redevelopment (low flow, turbid)?			
ŭ	· · · · · · · · · · · · · · · · · · ·			
6 Based on y	your professional judgement, is the well construction / location			
	appropriate to 1) achieve the objectives of the Groundwater			
	Monitoring Program and 2) comply with the applicable regulatory			
	requirements?			
7.0	antions as wooded by defe			
/ Corrective	actions as needed, by date:			
Symmetry -				

Site Name Permit Number	Plant hammond	-8		
Well ID	HOWA-48D	-0.00		
Date, field conditions	3/11/21 8/12/21	- (0		
,		yes	no	n/a
1 Location/I		~		
а	Is the well visible and accessible?	Δ		
b	Is the well properly identified with the correct well ID?	X		
С	Is the well in a high traffic area and does the well require		. 1	
	protection from traffic?		X	
d	Is the drainage around the well acceptable? (no standing water,	V		
	nor is well located in obvious drainage flow path)	Δ		
2 Protective	Casing			
a	Is the protective casing free from apparent damage and able to be			
	secured?	<u>X</u>		
b	Is the casing free of degradation or deterioration?	X		
С	Does the casing have a functioning weep hole?	X		
d	Is the annular space between casings clear of debris and water,	3.72.7		
	or filled with pea gravel/sand?	X		O
е	Is the well locked and is the lock in good condition?			·
3 Surface pa	ad			
а а	Is the well pad in good condition (not cracked or broken)?	X		
b	Is the well pad sloped away from the protective casing?	X		·
C	Is the well pad in complete contact with the protective casing?	X		
d	Is the well pad in complete contact with the ground surface and		2.———.	
	stable? (not undermined by erosion, animal burrows, and does not	t		
	move when stepped on)			
е	Is the pad surface clean (not covered with sediment or debris)?	X		
4 Internal ca	sina			
a a	Does the cap prevent entry of foreign material into the well?	X		
b	Is the casing free of kinks or bends, or any obstructions from			-
	foreign objects (such as bailers)?	X		
С	Is the well properly vented for equilibration of air pressure?	X		
d	Is the survey point clearly marked on the inner casing?	X		
е	Is the depth of the well consistent with the original well log?	X		
f	Is the casing stable? (or does the pvc move easily when touched			
	or can it be taken apart by hand due to lack of grout or use of slip	×		
	couplings in construction)	Δ		
5 Sampling:	Groundwater Wells Only:			
а	Does well recharge adequately when purged?	X		
b	If dedicated sampling equipment installed, is it in good condition	2.4		,5
	and specified in the approved groundwater plan for the facility?	<u>X</u>		
С	Does the well require redevelopment (low flow, turbid)?		X	
6 Based on	your professional judgement, is the well construction / location			
o based on	appropriate to 1) achieve the objectives of the Groundwater			
	Monitoring Program and 2) comply with the applicable regulatory			
	requirements?	X		
c200 = c000				
7 Corrective	actions as needed, by date:			
YWYW				

Site Name	Plant hammond			
Permit Number		20 20		
Well ID	HGWA-III	3) 3)		
Date, field conditions	8/11/21 8/12/2	.l		
1	doublification	yes	no	n/a
1 Location/le	Is the well visible and accessible?	X		
a		~		33
b	Is the well properly identified with the correct well ID? Is the well in a high traffic area and does the well require			
С			V	
	protection from traffic?			H
d	Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)	V		
	flor is well located in obvious drainage flow patri)		 :	9
2 Protective				
а	Is the protective casing free from apparent damage and able to be			
	secured?			
b	Is the casing free of degradation or deterioration?	X		
С	Does the casing have a functioning weep hole?	X		
d	Is the annular space between casings clear of debris and water,	36		
	or filled with pea gravel/sand?	X		
е	Is the well locked and is the lock in good condition?			
3 Surface pa	ad			
a	Is the well pad in good condition (not cracked or broken)?	X		
b	Is the well pad sloped away from the protective casing?	X		
C	Is the well pad in complete contact with the protective casing?	X		(
d	Is the well pad in complete contact with the ground surface and			:X
	stable? (not undermined by erosion, animal burrows, and does not			
	move when stepped on)	X		
е	Is the pad surface clean (not covered with sediment or debris)?	X	_	
4 Internal ca	sina			
a	Does the cap prevent entry of foreign material into the well?	V		
	Is the casing free of kinks or bends, or any obstructions from	/		
	foreign objects (such as bailers)?	X		
	Is the well properly vented for equilibration of air pressure?	X		
	Is the survey point clearly marked on the inner casing?	\(\frac{1}{2} \)		
	Is the depth of the well consistent with the original well log?	♦		
f	Is the casing stable? (or does the pvc move easily when touched		$\overline{}$	7
•	or can it be taken apart by hand due to lack of grout or use of slip			
	couplings in construction)	X		
5 Sampling	Groundwater Wells Only:			
	Does well recharge adequately when purged?	X		
b	If dedicated sampling equipment installed, is it in good condition	1		
	and specified in the approved groundwater plan for the facility?			\sim
	Does the well require redevelopment (low flow, turbid)?		X	
	your professional judgement, is the well construction / location appropriate to 1) achieve the objectives of the Groundwater Monitoring Program and 2) comply with the applicable regulatory			
	requirements?	X		
7 Corrective	actions as needed, by date:			

Site Name	Plant Hammond	 12		
Permit Number	H&WA-112	-		
Well ID	What is a state of	-		
Date, field conditions	8/12/21 Sunny 83°F	+ :		
1 Location/l	dentification	yes	no	n/a
a	Is the well visible and accessible?			
b	Is the well properly identified with the correct well ID?	V		()
c	Is the well in a high traffic area and does the well require			
Ü	protection from traffic?			
d	Is the drainage around the well acceptable? (no standing water,			
· ·	nor is well located in obvious drainage flow path)			
	The terminosated in obvious drainings new path)		$\overline{}$	
2 Protective	Casing			
а	Is the protective casing free from apparent damage and able to be	102		
	secured?			
b	Is the casing free of degradation or deterioration?	/		
С	Does the casing have a functioning weep hole?	1		
d	Is the annular space between casings clear of debris and water,			:
	or filled with pea gravel/sand?	_		
е	Is the well locked and is the lock in good condition?	_		
3 Curfoso n	- d			
3 <u>Surface page</u>	ad Is the well pad in good condition (not cracked or broken)?	1		
a b	Is the well pad in good condition (not cracked or broken)? Is the well pad sloped away from the protective casing?			 1
	Is the well pad in complete contact with the protective casing?			
c d	Is the well pad in complete contact with the ground surface and	_		
ŭ	stable? (not undermined by erosion, animal burrows, and does no	+		
	move when stepped on)			
е	Is the pad surface clean (not covered with sediment or debris)?	1		
· ·	to the pad editade clean (not edited with edulment of debite).			
4 Internal ca	<u>asing</u>			
а	Does the cap prevent entry of foreign material into the well?	_		·
b	Is the casing free of kinks or bends, or any obstructions from			<u> </u>
	foreign objects (such as bailers)?	V		
С	Is the well properly vented for equilibration of air pressure?	_/		
d	Is the survey point clearly marked on the inner casing?	/		
е	Is the depth of the well consistent with the original well log?	_/		
f	Is the casing stable? (or does the pvc move easily when touched			
	or can it be taken apart by hand due to lack of grout or use of slip			
	couplings in construction)	~		
5 Sampling:	Groundwater Wells Only:			
a	Does well recharge adequately when purged?	/		
b	If dedicated sampling equipment installed, is it in good condition			
	and specified in the approved groundwater plan for the facility?	/		
С	Does the well require redevelopment (low flow, turbid)?		/	
2.5				
b Based on	your professional judgement, is the well construction / location			
	appropriate to 1) achieve the objectives of the Groundwater			
	Monitoring Program and 2) comply with the applicable regulatory			
	requirements?			
7 Corrective	actions as needed, by date:			
, concouve	assisting as needed, by date.			
-				

Site Name	Plant Hummond			
Permit Number	The state of	-		
Well ID	HGW 4-113	•		
Date, field conditions	SET BAI 8/11/21 HOT			1-
1 Leastion/L	dontification	yes	no	n/a
1 Location/le	ls the well visible and accessible?			
a		$\overline{}$		
b	Is the well properly identified with the correct well ID?	$\overline{}$		
С	Is the well in a high traffic area and does the well require			
	protection from traffic?			
d	Is the drainage around the well acceptable? (no standing water,			
	nor is well located in obvious drainage flow path)			 >
2 Protective	Casing			
a	Is the protective casing free from apparent damage and able to be			
	secured?			
b	Is the casing free of degradation or deterioration?			
С	Does the casing have a functioning weep hole?			
d	Is the annular space between casings clear of debris and water,			
	or filled with pea gravel/sand?			
е	Is the well locked and is the lock in good condition?			
		20		
3 Surface pa				
a	Is the well pad in good condition (not cracked or broken)?	_/		
	Is the well pad sloped away from the protective casing?	_		
	Is the well pad in complete contact with the protective casing?			
d	Is the well pad in complete contact with the ground surface and			
	stable? (not undermined by erosion, animal burrows, and does not			
	move when stepped on)			
е	Is the pad surface clean (not covered with sediment or debris)?			
4 Internal ca	sina			
	Does the cap prevent entry of foreign material into the well?			
	Is the casing free of kinks or bends, or any obstructions from	-		
	foreign objects (such as bailers)?			
	Is the well properly vented for equilibration of air pressure?			
	Is the survey point clearly marked on the inner casing?			
	Is the depth of the well consistent with the original well log?			
	Is the casing stable? (or does the pvc move easily when touched			
	or can it be taken apart by hand due to lack of grout or use of slip			
	couplings in construction)			
5 Camalian	Croundwater Walla Only	De 19		
	Groundwater Wells Only: Does well recharge adequately when purged?			
	If dedicated sampling equipment installed, is it in good condition			 0
	and specified in the approved groundwater plan for the facility?	_		
	Does the well require redevelopment (low flow, turbid)?			
·				0
	our professional judgement, is the well construction / location			
	appropriate to 1) achieve the objectives of the Groundwater			
	Monitoring Program and 2) comply with the applicable regulatory			
	requirements?			
7 Corrective	actions as pooded, by date:			
/ Corrective	actions as needed, by date:			
_				

Site Name	plant hammend				
Permit Number		-			
Well ID	HGWC-101				
Date, field conditions	811/21 8116/21				
		yes	no	n/a	
1 Location/I	<u>dentification</u>				
а	Is the well visible and accessible?	X			
b	Is the well properly identified with the correct well ID?	X	·		
С	Is the well in a high traffic area and does the well require				
	protection from traffic?		X		
d	Is the drainage around the well acceptable? (no standing water,		6.		
	nor is well located in obvious drainage flow path)	X			
- NACO PROPERTY AND PROPERTY AN	20000 F-1-0-0-114	-			100
2 Protective					
а	Is the protective casing free from apparent damage and able to be				
	secured?	_X_			
b	Is the casing free of degradation or deterioration?	X			
С	Does the casing have a functioning weep hole?	X			
d	Is the annular space between casings clear of debris and water,	/			
	or filled with pea gravel/sand?	X			
е	Is the well locked and is the lock in good condition?	X	33		
3 <u>Surface pa</u>					
а	Is the well pad in good condition (not cracked or broken)?	X			
b	Is the well pad sloped away from the protective casing?	X			
С	Is the well pad in complete contact with the protective casing?	X			
d	Is the well pad in complete contact with the ground surface and				
	stable? (not undermined by erosion, animal burrows, and does not	27.75			
	move when stepped on)	_X_			
е	Is the pad surface clean (not covered with sediment or debris)?	X			
A farencet on	2402				
4 Internal ca		Y			
a	Does the cap prevent entry of foreign material into the well?				
b	Is the casing free of kinks or bends, or any obstructions from	40			
	foreign objects (such as bailers)?	X			
	Is the well properly vented for equilibration of air pressure?	X			
	Is the survey point clearly marked on the inner casing?	X			
e	Is the depth of the well consistent with the original well log?	_X_			
	Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip				
	couplings in construction)	V			
	couplings in construction)				
5 Sampling:	Groundwater Wells Only:				
	Does well recharge adequately when purged?	X			
	If dedicated sampling equipment installed, is it in good condition				
	and specified in the approved groundwater plan for the facility?	X			
	Does the well require redevelopment (low flow, turbid)?		$\overline{\mathbf{x}}$		
v				-	
6 Based on y	our professional judgement, is the well construction / location				
	appropriate to 1) achieve the objectives of the Groundwater				
	Monitoring Program and 2) comply with the applicable regulatory				
	requirements?	X			
	·		0		
	actions as needed, by date:				
none					

Site Name	Plant Hammond	_		
Permit Number	1171.17 -105	-		
Well ID	HGWC-102 8/13/21			
Date, field conditions	8/13/21	- ,,,,,,,		7/0
1 Location/I	dentification	yes	no	n/a
a	Is the well visible and accessible?	./		
b	Is the well properly identified with the correct well ID?	-		
C	Is the well in a high traffic area and does the well require			
C	protection from traffic?			
d	Is the drainage around the well acceptable? (no standing water,			
u	nor is well located in obvious drainage flow path)	./		
	er te conserva		—	
2 Protective				
а	Is the protective casing free from apparent damage and able to be	,		
	secured?			
b	Is the casing free of degradation or deterioration?	V		
С	Does the casing have a functioning weep hole?	/		
d	Is the annular space between casings clear of debris and water,		-	
	or filled with pea gravel/sand?	1		
е	Is the well locked and is the lock in good condition?	/		
2.0				
3 <u>Surface pa</u>		-		
a	Is the well pad in good condition (not cracked or broken)?	V		
b	Is the well pad sloped away from the protective casing?	V		
C	Is the well pad in complete contact with the protective casing?	V		
d	Is the well pad in complete contact with the ground surface and			
22	stable? (not undermined by erosion, animal burrows, and does no	ι	-	
	move when stepped on)	_		
е	Is the pad surface clean (not covered with sediment or debris)?	V		
4 Internal ca	sing			
а	Does the cap prevent entry of foreign material into the well?			
b	Is the casing free of kinks or bends, or any obstructions from	-		
	foreign objects (such as bailers)?	/		
С	Is the well properly vented for equilibration of air pressure?	1		
d	Is the survey point clearly marked on the inner casing?	V		
е	Is the depth of the well consistent with the original well log?	V		
f	Is the casing stable? (or does the pvc move easily when touched			
	or can it be taken apart by hand due to lack of grout or use of slip			
	couplings in construction)			:
5 Campling	Croundwater Wells Only			
	Groundwater Wells Only: Does well recharge adequately when purged?	./		
	If dedicated sampling equipment installed, is it in good condition			
	and specified in the approved groundwater plan for the facility?			
	Does the well require redevelopment (low flow, turbid)?			
С	boes the well require redevelopment (low flow, turbid)?			
6 Based on v	your professional judgement, is the well construction / location			
	appropriate to 1) achieve the objectives of the Groundwater			
	Monitoring Program and 2) comply with the applicable regulatory			
	requirements?	V		
7.0 "				
/ Corrective	actions as needed, by date:			
-				

Site Name	plant hammond	ŧć		
Permit Number	1	•		
Well ID	HGWC-103			
Date, field conditions	8/11/21 8/16/21	£		
1 Location/le	dentification	yes	no	n/a
9.	Is the well visible and accessible?	V		
a b	Is the well properly identified with the correct well ID?			
C	Is the well in a high traffic area and does the well require	\rightarrow	*	
C	protection from traffic?		\times	
d	Is the drainage around the well acceptable? (no standing water,			
ŭ	nor is well located in obvious drainage flow path)	V		
		_		8 8
2 Protective				
а	Is the protective casing free from apparent damage and able to be			
	secured?	X		
b	Is the casing free of degradation or deterioration?	X		
С	Does the casing have a functioning weep hole?	X		
d	Is the annular space between casings clear of debris and water,	1		
	or filled with pea gravel/sand?	×		
е	Is the well locked and is the lock in good condition?	X		: :
3 Surface pa	ad			
	Is the well pad in good condition (not cracked or broken)?	17		
	Is the well pad sloped away from the protective casing?	×		
	Is the well pad in complete contact with the protective casing?	$\overline{}$		
	Is the well pad in complete contact with the ground surface and	-		
	stable? (not undermined by erosion, animal burrows, and does not	17		
	move when stepped on)	X		
е	Is the pad surface clean (not covered with sediment or debris)?	X		
414		7	-	
4 <u>Internal ca</u>		V		
	Does the cap prevent entry of foreign material into the well? Is the casing free of kinks or bends, or any obstructions from	Δ		
	foreign objects (such as bailers)?	V		
	Is the well properly vented for equilibration of air pressure?			
	Is the survey point clearly marked on the inner casing?	\		
	Is the depth of the well consistent with the original well log?	-	(X
	Is the casing stable? (or does the pvc move easily when touched			;
•	or can it be taken apart by hand due to lack of grout or use of slip			
	couplings in construction)	X		
F 0				s s
	Groundwater Wells Only:	V		
	Does well recharge adequately when purged? If dedicated sampling equipment installed, is it in good condition			; :
	and specified in the approved groundwater plan for the facility?	Y		
	Does the well require redevelopment (low flow, turbid)?			9
C	boes the well require redevelopment (low llow, tarbia):		_	
6 Based on y	our professional judgement, is the well construction / location			
	appropriate to 1) achieve the objectives of the Groundwater			
	Monitoring Program and 2) comply with the applicable regulatory			
	requirements?	X_		
7.0	actions as was fad by data.			.====x
	actions as needed, by date:			
- NOV	VL			

Site Name	Plant hammond			
Permit Number	100:10 100			
Well ID	HGWC-105			
Date, field conditions	811121 813[4	yes	no	n/a
1 Location/le	dentification	yes	110	11/4
a	Is the well visible and accessible?	X		
b	Is the well properly identified with the correct well ID?	X		
C	Is the well in a high traffic area and does the well require	-		
· ·	protection from traffic?		X	
d	Is the drainage around the well acceptable? (no standing water,			
ů.	nor is well located in obvious drainage flow path)	X		
2 Protective	Cacina			
	Is the protective casing free from apparent damage and able to be			
а	secured?	X		
∍ b	Is the casing free of degradation or deterioration?	~		
	Does the casing have a functioning weep hole?	→		
c d	Is the annular space between casings clear of debris and water,	\sim		
u	or filled with pea gravel/sand?	X		
е	Is the well locked and is the lock in good condition?	X		
3 <u>Surface pa</u>		V		
a	Is the well pad in good condition (not cracked or broken)? Is the well pad sloped away from the protective casing?	\rightarrow		
b	Is the well pad in complete contact with the protective casing?	\rightarrow		
C	Is the well pad in complete contact with the ground surface and			—
d	stable? (not undermined by erosion, animal burrows, and does not			
	move when stepped on)	X		
•	Is the pad surface clean (not covered with sediment or debris)?	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
е	is the pad surface dear (not covered with scannett or debrio):			
4 <u>Internal ca</u>		4 2		
а	Does the cap prevent entry of foreign material into the well?	_X_		
b	Is the casing free of kinks or bends, or any obstructions from	~		
	foreign objects (such as bailers)?	\triangle		
C	Is the well properly vented for equilibration of air pressure?	X		
d	Is the survey point clearly marked on the inner casing?	X		
е	Is the depth of the well consistent with the original well log?	Δ		-
f	Is the casing stable? (or does the pvc move easily when touched			
	or can it be taken apart by hand due to lack of grout or use of slip			
	couplings in construction)	_X_		
5 Sampling:	Groundwater Wells Only:			
а	Does well recharge adequately when purged?	X		
b	If dedicated sampling equipment installed, is it in good condition			-
	and specified in the approved groundwater plan for the facility?			
С	Does the well require redevelopment (low flow, turbid)?		\times	
6 Based on	your professional judgement, is the well construction / location			
_ ===== •••	appropriate to 1) achieve the objectives of the Groundwater			
	Monitoring Program and 2) comply with the applicable regulatory	1		
	requirements?	X		
	•			-
7 Corrective	e actions as needed, by date:			

Site Name	Plant hammond	ć.		
Permit Number	10/10/10/10	6		
Well ID	HGWC-107			
Date, field conditions	811121 8113121	£		1
1 Leastion/L	dontification	yes	no	n/a
1 Location/le	Is the well visible and accessible?	1		
a b	Is the well visible and accessible? Is the well properly identified with the correct well ID?	_		
C	Is the well in a high traffic area and does the well require	$\overline{}$		
C	protection from traffic?	XX	- X	
d	Is the drainage around the well acceptable? (no standing water,			
ŭ	nor is well located in obvious drainage flow path)	V		
	Tior is well located in obvious drainage now path)			
2 Protective	Casing			
а	Is the protective casing free from apparent damage and able to be	8.6		
	secured?	X		
b	Is the casing free of degradation or deterioration?	X		A
С	Does the casing have a functioning weep hole?	X		· — ·
d	Is the annular space between casings clear of debris and water,			
	or filled with pea gravel/sand?	X		
е	Is the well locked and is the lock in good condition?	V		-
3 Curfoco no		/-		
3 <u>Surface pa</u>	ls the well pad in good condition (not cracked or broken)?	V		
a b	Is the well pad sloped away from the protective casing?	\rightarrow		
	Is the well pad in complete contact with the protective casing?	\rightarrow		
c d	Is the well pad in complete contact with the ground surface and	\rightarrow		
u	stable? (not undermined by erosion, animal burrows, and does not			
	move when stepped on)	V		
е	Is the pad surface clean (not covered with sediment or debris)?	\	$\overline{}$	
C	in the part surface steam (not sorted a man southern as a destroy).	/-	$\overline{}$	
4 <u>Internal ca</u>				
	Does the cap prevent entry of foreign material into the well?	\sim		
	Is the casing free of kinks or bends, or any obstructions from	No. oraș		
	foreign objects (such as bailers)?	X_		
	Is the well properly vented for equilibration of air pressure?	X		
	Is the survey point clearly marked on the inner casing?	X		
	Is the depth of the well consistent with the original well log?	X		F
	Is the casing stable? (or does the pvc move easily when touched			
	or can it be taken apart by hand due to lack of grout or use of slip couplings in construction)	V		
	couplings in construction)			: :
5 Sampling:	Groundwater Wells Only:			
	Does well recharge adequately when purged?	X		
b	If dedicated sampling equipment installed, is it in good condition	N./		
	and specified in the approved groundwater plan for the facility?	X		
С	Does the well require redevelopment (low flow, turbid)?		X	
0 -				
	our professional judgement, is the well construction / location			
	appropriate to 1) achieve the objectives of the Groundwater			
	Monitoring Program and 2) comply with the applicable regulatory	V		
	requirements?			
7 Corrective	actions as needed, by date:			
NON				

Site Name Permit Number	plant hammond	-		
Well ID	HGWC-109	-		
Date, field conditions	811/21	1		
,	8,0110	yes	no	n/a
1 Location/I	dentification	,00	110	ri/a
a	Is the well visible and accessible?	X		
b	Is the well properly identified with the correct well ID?	\		
C	Is the well in a high traffic area and does the well require			
· ·	protection from traffic?		V	
d	Is the drainage around the well acceptable? (no standing water,			
u	nor is well located in obvious drainage flow path)	V		
	nor is well located in obvious drainage flow patri)	Δ		
2 Protective	Casing			
a	Is the protective casing free from apparent damage and able to be			
ű	secured?	V		
b	Is the casing free of degradation or deterioration?	→		
C	Does the casing have a functioning weep hole?	X	-	-
d	- · · · · · · · · · · · · · · · · · · ·	\rightarrow		
u	Is the annular space between casings clear of debris and water,	~		
_	or filled with pea gravel/sand?			
е	Is the well locked and is the lock in good condition?			
3 Surface pa	ad			
	Is the well pad in good condition (not cracked or broken)?	~		
	Is the well pad sloped away from the protective casing?	-		
	Is the well pad in complete contact with the protective casing?	4		
	Is the well pad in complete contact with the ground surface and			
	stable? (not undermined by erosion, animal burrows, and does not	15/2		
	move when stepped on)	X_		
е	Is the pad surface clean (not covered with sediment or debris)?	_X_		
4 Internal ca	sina			
	Does the cap prevent entry of foreign material into the well?	Y		
	Is the casing free of kinks or bends, or any obstructions from	/		
	foreign objects (such as bailers)?	V		
	Is the well properly vented for equilibration of air pressure?	\rightarrow	-	
	Is the survey point clearly marked on the inner casing?	→		
		X		
e f	Is the depth of the well consistent with the original well log? Is the casing stable? (or does the pvc move easily when touched	X_		
	or can it be taken apart by hand due to lack of grout or use of slip			
	couplings in construction)	V		
	couplings in construction)		-	
5 Sampling:	Groundwater Wells Only:			
	Does well recharge adequately when purged?	X		
	If dedicated sampling equipment installed, is it in good condition			
	and specified in the approved groundwater plan for the facility?	X		
	Does the well require redevelopment (low flow, turbid)?		V	
-	talled).		_	
6 Based on y	our professional judgement, is the well construction / location			
	appropriate to 1) achieve the objectives of the Groundwater			
	Monitoring Program and 2) comply with the applicable regulatory			
	requirements?	X		
	·			
7 Corrective	actions as needed, by date:			

Site Name	Plant Hennich J	_0		
Permit Number		=21 =31		
Well ID	MOILUE-117	=2 =0		
Date, field conditions	849 8/1/12/ Most			
		yes	no	n/a
1.Location/le	dentification	•		
a	Is the well visible and accessible?			
b	Is the well properly identified with the correct well ID?	-		
С	Is the well in a high traffic area and does the well require			
•	protection from traffic?			
d	Is the drainage around the well acceptable? (no standing water,			
u	nor is well located in obvious drainage flow path)			
	Tion to well located in obvious drainage now pathy			
2 Protective	Casing			
а	Is the protective casing free from apparent damage and able to be	!		
	secured?	-		
b	Is the casing free of degradation or deterioration?			
C	Does the casing have a functioning weep hole?			
d	Is the annular space between casings clear of debris and water,			
u u	or filled with pea gravel/sand?			
е	Is the well locked and is the lock in good condition?			
C	is the well locked and is the lock in good condition:	_		
3 Surface pa	ad			
a	Is the well pad in good condition (not cracked or broken)?			
b	Is the well pad sloped away from the protective casing?	_		
c	Is the well pad in complete contact with the protective casing?			
ď	Is the well pad in complete contact with the ground surface and			
•	stable? (not undermined by erosion, animal burrows, and does no	ŀ		
	move when stepped on)			
е	Is the pad surface clean (not covered with sediment or debris)?			
С	to the pad surface death (not covered with sediment of debits):	_		
4 Internal ca	sing			
a	Does the cap prevent entry of foreign material into the well?	~		
	Is the casing free of kinks or bends, or any obstructions from			
	foreign objects (such as bailers)?	_		
	Is the well properly vented for equilibration of air pressure?			
	Is the survey point clearly marked on the inner casing?			
	Is the depth of the well consistent with the original well log?		_	
	Is the casing stable? (or does the pvc move easily when touched	_		
•	or can it be taken apart by hand due to lack of grout or use of slip			
	couplings in construction)	-		
	oupmige in concausion)			
5 Sampling:	Groundwater Wells Only:			
а	Does well recharge adequately when purged?			
b	If dedicated sampling equipment installed, is it in good condition			
	and specified in the approved groundwater plan for the facility?			
	Does the well require redevelopment (low flow, turbid)?		-	
	(,			
6 Based on y	our professional judgement, is the well construction / location			
	appropriate to 1) achieve the objectives of the Groundwater			
	Monitoring Program and 2) comply with the applicable regulatory			
	requirements?	~		
7 Corrective	actions as needed, by date:			

Site Name Permit Number	Plant Hammond	_		
Well ID	1/41.//119	-		
Date, field conditions	HGWC-118	-		
Date, nela coriations	0/19/2	VAS	no	n/a
1 Location/I		yes	. 110	II/a
а	Is the well visible and accessible?	V		
b	Is the well properly identified with the correct well ID?	1		
С	Is the well in a high traffic area and does the well require			·
	protection from traffic?		V	
d	Is the drainage around the well acceptable? (no standing water,		HEALTH S	
	nor is well located in obvious drainage flow path)	1/		
2 Protective	Casing			
а	Is the protective casing free from apparent damage and able to be			
	secured?	V		
b	Is the casing free of degradation or deterioration?			
С	Does the casing have a functioning weep hole?	1		
d	Is the annular space between casings clear of debris and water,			
	or filled with pea gravel/sand?	V		
е	Is the well locked and is the lock in good condition?	V		
3 Curfoso no	- d			
3 <u>Surface pa</u>	Is the well pad in good condition (not cracked or broken)?	1		
a b	Is the well pad in good condition (not cracked or broken)?	-		 8
C	Is the well pad in complete contact with the protective casing?			
d	Is the well pad in complete contact with the ground surface and			
ď	stable? (not undermined by erosion, animal burrows, and does no	ŀ		
	move when stepped on)			
е	Is the pad surface clean (not covered with sediment or debris)?			
4 <u>Internal ca</u>		_		
a	Does the cap prevent entry of foreign material into the well?			
	Is the casing free of kinks or bends, or any obstructions from			
	foreign objects (such as bailers)?			
	Is the well properly vented for equilibration of air pressure?			
	Is the survey point clearly marked on the inner casing? Is the depth of the well consistent with the original well log?	-		
	Is the casing stable? (or does the pvc move easily when touched			
	or can it be taken apart by hand due to lack of grout or use of slip			
	couplings in construction)	./		
	-to an attraction to test			
	Groundwater Wells Only:			
	Does well recharge adequately when purged?			
	If dedicated sampling equipment installed, is it in good condition			
	and specified in the approved groundwater plan for the facility?			V
С	Does the well require redevelopment (low flow, turbid)?		V	
6 Based on v	our professional judgement, is the well construction / location			
	appropriate to 1) achieve the objectives of the Groundwater			
	Monitoring Program and 2) comply with the applicable regulatory			
	requirements?			
7.0 "				
/ Corrective	actions as needed, by date:			
				

Site Name	Plant Hammand	_		
Permit Number	1.7.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	-		
Well ID	MW-12	=7		
Date, field conditions	8/11/21	<u>-1</u>		,
1 Location/le	dentification	yes	no	n/a
	Is the well visible and accessible?	./		
a b	Is the well properly identified with the correct well ID?			
C	Is the well in a high traffic area and does the well require			
	protection from traffic?		_/	
d	Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)			
2 Protective	Casing			
а	Is the protective casing free from apparent damage and able to be secured?	1		
b	Is the casing free of degradation or deterioration?	1		
С	Does the casing have a functioning weep hole?	V		
d	Is the annular space between casings clear of debris and water,			
	or filled with pea gravel/sand?	V		
е	Is the well locked and is the lock in good condition?	V		
3 Surface pa	ad			
a	Is the well pad in good condition (not cracked or broken)?	V		
b	Is the well pad sloped away from the protective casing?	/		
С	Is the well pad in complete contact with the protective casing?	1/	******	 ;
d	Is the well pad in complete contact with the ground surface and			
	stable? (not undermined by erosion, animal burrows, and does no	t		
	move when stepped on)			
е	Is the pad surface clean (not covered with sediment or debris)?	/	-	
4 Internal ca	sing			
a	Does the cap prevent entry of foreign material into the well?	V		
b	Is the casing free of kinks or bends, or any obstructions from			
	foreign objects (such as bailers)?	V		
С	Is the well properly vented for equilibration of air pressure?	V		
d	Is the survey point clearly marked on the inner casing?	/		
е	Is the depth of the well consistent with the original well log?	1		
•	Is the casing stable? (or does the pvc move easily when touched			
	or can it be taken apart by hand due to lack of grout or use of slip			
	couplings in construction)			
5 Sampling:	Groundwater Wells Only:			
	Does well recharge adequately when purged?			1/
b	If dedicated sampling equipment installed, is it in good condition			
	and specified in the approved groundwater plan for the facility?			V
С	Does the well require redevelopment (low flow, turbid)?			
	your professional judgement, is the well construction / location appropriate to 1) achieve the objectives of the Groundwater			
	Monitoring Program and 2) comply with the applicable regulatory requirements?	V		
7 Corrective	actions as needed, by date:	(i)	e	
, conecuve	actions as needed, by date.			

Site Name	Plant Hummens	•		
Permit Number	110			
Vell ID	Harles - 117 A	•		
Date, field conditions	844 BIMDI Sunny hed		20	n/a
1 Location/I	dentification	yes	no	n/a
а	Is the well visible and accessible?			
b	Is the well properly identified with the correct well ID?			
С	Is the well in a high traffic area and does the well require			
	protection from traffic?			
d	Is the drainage around the well acceptable? (no standing water,			
	nor is well located in obvious drainage flow path)			
2 Protective	Casing			
a	Is the protective casing free from apparent damage and able to be			
	secured?			
b	Is the casing free of degradation or deterioration?	_		
С	Does the casing have a functioning weep hole?			
d	Is the annular space between casings clear of debris and water,			
	or filled with pea gravel/sand?	100		
е	Is the well locked and is the lock in good condition?			
3 <u>Surface pa</u>	ad			
a a	Is the well pad in good condition (not cracked or broken)?			
b	Is the well pad sloped away from the protective casing?			9
С	Is the well pad in complete contact with the protective casing?			D
d	Is the well pad in complete contact with the ground surface and			
	stable? (not undermined by erosion, animal burrows, and does not			
	move when stepped on)			
е	Is the pad surface clean (not covered with sediment or debris)?	_		
4 Internal ca	asing			
a	Does the cap prevent entry of foreign material into the well?		-	
b	Is the casing free of kinks or bends, or any obstructions from			
	foreign objects (such as bailers)?	_		
С	Is the well properly vented for equilibration of air pressure?	_		
d	Is the survey point clearly marked on the inner casing?			
е	Is the depth of the well consistent with the original well log?			
f	Is the casing stable? (or does the pvc move easily when touched			
	or can it be taken apart by hand due to lack of grout or use of slip			
	couplings in construction)			
5 <u>Sampling:</u>	Groundwater Wells Only:			
а	Does well recharge adequately when purged?			
b	If dedicated sampling equipment installed, is it in good condition			
	and specified in the approved groundwater plan for the facility?			
С	Does the well require redevelopment (low flow, turbid)?		_	
6 Based on	your professional judgement, is the well construction / location			
	appropriate to 1) achieve the objectives of the Groundwater			
	Monitoring Program and 2) comply with the applicable regulatory	/		
	requirements?			
7 Corrective	actions as needed, by date:			
2011001110				

e Name	Plant Hermand			
rmit Number		•		
ell ID	6W6-4	-		
te, field conditior		,		
te, nela condition	0111/2	- yes	no	n/a
1.Location	n/Identification	yes	110	11/4
a	Is the well visible and accessible?	/		
b	Is the well properly identified with the correct well ID?	V		
C	Is the well in a high traffic area and does the well require		*	-
	protection from traffic?			
d	Is the drainage around the well acceptable? (no standing water,			
	nor is well located in obvious drainage flow path)			
2 Protocti	vo Cocina			
2 <u>Protecti</u>	Is the protective casing free from apparent damage and able to be			
а	secured?	1/		
b	Is the casing free of degradation or deterioration?	_		
C	Does the casing have a functioning weep hole?		-	====
d	Is the annular space between casings clear of debris and water,		-	
~	or filled with pea gravel/sand?	1/		
е	Is the well locked and is the lock in good condition?	V		
3 Curfoso	nad	-0.		2;
3 <u>Surface</u>	Is the well pad in good condition (not cracked or broken)?	./		
a b	Is the well pad sloped away from the protective casing?	1		
C	Is the well pad in complete contact with the protective casing?			
d	Is the well pad in complete contact with the ground surface and			
ŭ	stable? (not undermined by erosion, animal burrows, and does no	t ,		
	move when stepped on)			
е	Is the pad surface clean (not covered with sediment or debris)?	/		
4 Internal	easing			
a	Does the cap prevent entry of foreign material into the well?	./		
b	Is the casing free of kinks or bends, or any obstructions from			
D	foreign objects (such as bailers)?	1/		
С	Is the well properly vented for equilibration of air pressure?	1		
d	Is the survey point clearly marked on the inner casing?			
e	Is the depth of the well consistent with the original well log?	~		
f	Is the casing stable? (or does the pvc move easily when touched		***********	
	or can it be taken apart by hand due to lack of grout or use of slip			
	couplings in construction)			
5 Samplin	g: Groundwater Wells Only:			
а	Does well recharge adequately when purged?			
b	If dedicated sampling equipment installed, is it in good condition	-		
-	and specified in the approved groundwater plan for the facility?			
С	Does the well require redevelopment (low flow, turbid)?			V
6 Pasad a	on your professional judgement, is the well construction / location			
o based 0	on your professional judgement, is the well construction / location appropriate to 1) achieve the objectives of the Groundwater			
	Monitoring Program and 2) comply with the applicable regulatory			
	requirements?	V		
	roquiromono:			
7 Correcti	ve actions as needed, by date:			
s				

mit Number ID e, field conditions 1_ <u>Location/le</u> a	GW(-C 8/11/21			
e, field conditions 1 Location/le	8/11/21			
1 Location/le	_ D [/ L			
		yes	no	n/a
	dentification	, ••		
- -	Is the well visible and accessible?	/		
b	Is the well properly identified with the correct well ID?	V	*	
C	Is the well in a high traffic area and does the well require			
	protection from traffic?		V	
d	Is the drainage around the well acceptable? (no standing water,			0.00
	nor is well located in obvious drainage flow path)	V		
<u> </u>	- · · · · · · · · · · · · · · · · · · ·	2		0
2 Protective				
а	Is the protective casing free from apparent damage and able to be			
	secured?	V		
b	Is the casing free of degradation or deterioration?	V		, ,
C	Does the casing have a functioning weep hole?			
d	Is the annular space between casings clear of debris and water,	- 2		
	or filled with pea gravel/sand?	V		
е	Is the well locked and is the lock in good condition?	V		-
3 Surface pa	ad			
а	Is the well pad in good condition (not cracked or broken)?	V		
b	Is the well pad sloped away from the protective casing?			-
C	Is the well pad in complete contact with the protective casing?			
d	Is the well pad in complete contact with the ground surface and			
	stable? (not undermined by erosion, animal burrows, and does not			
	move when stepped on)	V		
е	Is the pad surface clean (not covered with sediment or debris)?	/		
1 Internal or	ging			
4 <u>Internal ca</u> a	Does the cap prevent entry of foreign material into the well?	./		
b	Is the casing free of kinks or bends, or any obstructions from		-	
b	foreign objects (such as bailers)?	/		
С	Is the well properly vented for equilibration of air pressure?			
ď	Is the survey point clearly marked on the inner casing?			
e	is the depth of the well consistent with the original well log?	~	-	
f	Is the casing stable? (or does the pvc move easily when touched			
·	or can it be taken apart by hand due to lack of grout or use of slip			
	couplings in construction)			
5 Sampling	Groundwater Wells Only:			
a <u>bamping.</u>	Does well recharge adequately when purged?			
b	If dedicated sampling equipment installed, is it in good condition			
b	and specified in the approved groundwater plan for the facility?			
С	Does the well require redevelopment (low flow, turbid)?			V
6 Donal a	your professional judgement is the well acceptuation / leastion			
o Based on	your professional judgement, is the well construction / location			
	appropriate to 1) achieve the objectives of the Groundwater Monitoring Program and 2) comply with the applicable regulatory			
	Monitoring Program and 2) comply with the applicable regulatory	./		
	requirements?	<u> </u>		
7 Corrective	actions as needed, by date:			
. 55.166.176				

ame	Plant Hammand			
t Number	- Participant			
D	6W1-8	•		
field conditions	6/11/21			
neia conattorio	6/11/21	yes	no	n/a
1 Location/I	dentification	,		
a	Is the well visible and accessible?	~		
b	Is the well properly identified with the correct well ID?	V		
С	Is the well in a high traffic area and does the well require			 :
	protection from traffic?		V	
d	Is the drainage around the well acceptable? (no standing water,			
	nor is well located in obvious drainage flow path)	_~		
2. Dunda atii in	Continu			
2 Protective	<u>Casing</u> Is the protective casing free from apparent damage and able to be			
а	secured?	./		
h	Is the casing free of degradation or deterioration?	V		
b	Does the casing have a functioning weep hole?		\leftarrow	
c d	Is the annular space between casings clear of debris and water,		-	; :
u	or filled with pea gravel/sand?	/		
е	Is the well locked and is the lock in good condition?	~	-	
3 <u>Surface pa</u>				
а	Is the well pad in good condition (not cracked or broken)?	<u></u>		-
b	Is the well pad sloped away from the protective casing?	V		
C	Is the well pad in complete contact with the protective casing?	V		
d	Is the well pad in complete contact with the ground surface and			
	stable? (not undermined by erosion, animal burrows, and does not			
	move when stepped on) Is the pad surface clean (not covered with sediment or debris)?	-		<u>; ——</u> ;
е	is the pad surface clean (not covered with sediment or debits):		(
4 Internal ca	sing			
а	Does the cap prevent entry of foreign material into the well?	V		
b	Is the casing free of kinks or bends, or any obstructions from			
	foreign objects (such as bailers)?			
С	Is the well properly vented for equilibration of air pressure?			
d	Is the survey point clearly marked on the inner casing?	V		
е	Is the depth of the well consistent with the original well log? Is the casing stable? (or does the pvc move easily when touched	~		
f	or can it be taken apart by hand due to lack of grout or use of slip			
	couplings in construction)	/		
	coupingo in conocidodon)		:===:	8=====
5 Sampling:	Groundwater Wells Only:			
а	Does well recharge adequately when purged?			
b	If dedicated sampling equipment installed, is it in good condition			
	and specified in the approved groundwater plan for the facility?			
С	Does the well require redevelopment (low flow, turbid)?		:	V
6 Based on	your professional judgement, is the well construction / location			
	appropriate to 1) achieve the objectives of the Groundwater			
	Monitoring Program and 2) comply with the applicable regulatory			
	requirements?	V		0
.	actions as needed, by date:			

Name iit Number	Plant Hamman	=0 =11		
ID	GWL-14			
field conditions	8/11/21	=0: =0:		
1 Location/	dentification	yes	no	n/a
a	Is the well visible and accessible?	1/		
b	Is the well properly identified with the correct well ID?		-	
C	Is the well in a high traffic area and does the well require			 2
Ü	protection from traffic?		1	
d	Is the drainage around the well acceptable? (no standing water,	-		
_	nor is well located in obvious drainage flow path)		· 	
2 Protective	Casing			
а	Is the protective casing free from apparent damage and able to be			
	secured?	1/		
b	Is the casing free of degradation or deterioration?	N.		
C	Does the casing have a functioning weep hole?	1/		-
d	Is the annular space between casings clear of debris and water,			
	or filled with pea gravel/sand?			
е	Is the well locked and is the lock in good condition?	/	_	
3 Surface p	ad			
a	Is the well pad in good condition (not cracked or broken)?	V		
b	Is the well pad sloped away from the protective casing?	1		
С	Is the well pad in complete contact with the protective casing?	1/		
d	Is the well pad in complete contact with the ground surface and			
	stable? (not undermined by erosion, animal burrows, and does no	t		
	move when stepped on)	~		
е	Is the pad surface clean (not covered with sediment or debris)?	/		÷
4 Internal ca				
а	Does the cap prevent entry of foreign material into the well?	<u></u>		
b	Is the casing free of kinks or bends, or any obstructions from	1		
	foreign objects (such as bailers)?	V		
С	Is the well properly vented for equilibration of air pressure?	V		
d	Is the survey point clearly marked on the inner casing?	V		
e	Is the depth of the well consistent with the original well log? Is the casing stable? (or does the pvc move easily when touched	V		
f	or can it be taken apart by hand due to lack of grout or use of slip			
	couplings in construction)	V		
5 Camplina				
	Groundwater Wells Only: Does well recharge adequately when purged?			/
a b	If dedicated sampling equipment installed, is it in good condition	*		
D	and specified in the approved groundwater plan for the facility?			1
С	Does the well require redevelopment (low flow, turbid)?		-	7
		-):	
♥ Based on	your professional judgement, is the well construction / location appropriate to 1) achieve the objectives of the Groundwater			
	Monitoring Program and 2) comply with the applicable regulatory			
	requirements?	./		
	TARAMAN AND AND AND AND AND AND AND AND AND A			

Site Name	Polant Hammand	-3		
Permit Number	/ manufe	77		
Vell ID	GW6-15	9		
Date, field conditions	8/11/21	yes	no	n/a
1 Location/le	dentification	yes	110	II/a
a	Is the well visible and accessible?	/		
b	Is the well properly identified with the correct well ID?	V		
С	Is the well in a high traffic area and does the well require	*******		
	protection from traffic?			
d	Is the drainage around the well acceptable? (no standing water,			
	nor is well located in obvious drainage flow path)			
2 Protective	Casing			
a	Is the protective casing free from apparent damage and able to be			
	secured?	/		
b	Is the casing free of degradation or deterioration?			
С	Does the casing have a functioning weep hole?	/		
d	Is the annular space between casings clear of debris and water,	_		
	or filled with pea gravel/sand?			C
е	Is the well locked and is the lock in good condition?			
3 Surface pa	ad			
a	Is the well pad in good condition (not cracked or broken)?	_/		
b	Is the well pad sloped away from the protective casing?	_/		
С	Is the well pad in complete contact with the protective casing?	/		
d	Is the well pad in complete contact with the ground surface and			
	stable? (not undermined by erosion, animal burrows, and does not			
	move when stepped on)			-
е	Is the pad surface clean (not covered with sediment or debris)?			
4 Internal ca	asing			
а	Does the cap prevent entry of foreign material into the well?	_/		
b	Is the casing free of kinks or bends, or any obstructions from			
	foreign objects (such as bailers)?	V		:
С	Is the well properly vented for equilibration of air pressure?	/		
d	Is the survey point clearly marked on the inner casing?			
e	Is the depth of the well consistent with the original well log? Is the casing stable? (or does the pvc move easily when touched			e .
f	or can it be taken apart by hand due to lack of grout or use of slip			
	couplings in construction)	1/		
E Compliant			· 	-
	Groundwater Wells Only: Does well recharge adequately when purged?			1/
a b	If dedicated sampling equipment installed, is it in good condition	$\overline{}$		
D	and specified in the approved groundwater plan for the facility?			~/
С	Does the well require redevelopment (low flow, turbid)?			V
6 Rasad on	your professional judgement, is the well construction / location			
O Dased Off	appropriate to 1) achieve the objectives of the Groundwater			
	Monitoring Program and 2) comply with the applicable regulatory			
	requirements?			
	'			N
7 Corrective	e actions as needed, by date:			

Name	Plant Hamman			
nit Number		20		
ID	GWC-16	-,.		
, field conditions	8/11/21	yes	no	n/a
1 Location/I	dentification	,00	110	Til G
а	Is the well visible and accessible?			
b	Is the well properly identified with the correct well ID?	~		
С	Is the well in a high traffic area and does the well require			
	protection from traffic?			
d	Is the drainage around the well acceptable? (no standing water,	-		
	nor is well located in obvious drainage flow path)	V		
2 Protective				
а	Is the protective casing free from apparent damage and able to be	_		
	secured?	V		
b	Is the casing free of degradation or deterioration?	V		
С	Does the casing have a functioning weep hole?	V		-
d	Is the annular space between casings clear of debris and water,			
	or filled with pea gravel/sand?	V		
е	Is the well locked and is the lock in good condition?			
3 Surface pa		_		
а	Is the well pad in good condition (not cracked or broken)?	~		
b	Is the well pad sloped away from the protective casing?	V		
C .	Is the well pad in complete contact with the protective casing?	_		
d	Is the well pad in complete contact with the ground surface and			
	stable? (not undermined by erosion, animal burrows, and does not			
	move when stepped on)			
е	Is the pad surface clean (not covered with sediment or debris)?		***************************************	
4 Internal ca				
а	Does the cap prevent entry of foreign material into the well?	$\underline{\hspace{0.1cm} V}$		
b	Is the casing free of kinks or bends, or any obstructions from			
	foreign objects (such as bailers)?			
С	Is the well properly vented for equilibration of air pressure?	~		
d	Is the survey point clearly marked on the inner casing?			-
e	Is the depth of the well consistent with the original well log? Is the casing stable? (or does the pvc move easily when touched	1		-
f	or can it be taken apart by hand due to lack of grout or use of slip			
	couplings in construction)	V		
5 Sampling	Groundwater Wells Only:			
а	Does well recharge adequately when purged?			
b	If dedicated sampling equipment installed, is it in good condition			
	and specified in the approved groundwater plan for the facility?			
С	Does the well require redevelopment (low flow, turbid)?			V
6 Based on	your professional judgement, is the well construction / location			
	appropriate to 1) achieve the objectives of the Groundwater			
	Monitoring Program and 2) comply with the applicable regulatory	/	Ž.	
	requirements?	V		
7 0000000000000000000000000000000000000	actions as pooded, by deter-			
/ Corrective	actions as needed, by date;			

Site Name	Plant Hammand			
Permit Number				
Well ID	GWC-19			
Date, field conditions	8/11/21	yes	no	n/a
1 Location/I	dentification	y 0 0	110	TI/ CI
a	Is the well visible and accessible?	1		
b	Is the well properly identified with the correct well ID?	1/		
С	Is the well in a high traffic area and does the well require			
	protection from traffic?		/	
d	Is the drainage around the well acceptable? (no standing water,			
	nor is well located in obvious drainage flow path)	V		
2 Protective	e Casing			
а	Is the protective casing free from apparent damage and able to be			
	secured?	V		
b	Is the casing free of degradation or deterioration?	V		
С	Does the casing have a functioning weep hole?			
d	Is the annular space between casings clear of debris and water,	/		
	or filled with pea gravel/sand?	_/		-
е	Is the well locked and is the lock in good condition?			
3 Surface p	<u>ad</u>	/		
а	Is the well pad in good condition (not cracked or broken)?	_//		
b	Is the well pad sloped away from the protective casing?			
С	Is the well pad in complete contact with the protective casing?			
d	Is the well pad in complete contact with the ground surface and			
	stable? (not undermined by erosion, animal burrows, and does not			
	move when stepped on)	V		
е	Is the pad surface clean (not covered with sediment or debris)?			-
4 Internal ca	asing	/		
а	Does the cap prevent entry of foreign material into the well?	V		
b	Is the casing free of kinks or bends, or any obstructions from	/		
	foreign objects (such as bailers)?	N		
С	Is the well properly vented for equilibration of air pressure?	V		
d	Is the survey point clearly marked on the inner casing?	~		
е	Is the depth of the well consistent with the original well log?	V		
f	Is the casing stable? (or does the pvc move easily when touched			
	or can it be taken apart by hand due to lack of grout or use of slip			
	couplings in construction)			(********* ***************************
5 Sampling	Groundwater Wells Only:			1
а	Does well recharge adequately when purged?			
b	If dedicated sampling equipment installed, is it in good condition			1
	and specified in the approved groundwater plan for the facility?			
С	Does the well require redevelopment (low flow, turbid)?			
6 Based on	your professional judgement, is the well construction / location			
	appropriate to 1) achieve the objectives of the Groundwater	9		
	Monitoring Program and 2) comply with the applicable regulatory			
	requirements?			n = = = = = = = = = = = = = = = = = = =
7 Corrective	e actions as needed, by date:			
5 	•			

September 2021

Name nit Number	Pkut Hemmond	į		
ID	11C and 11m			
, field conditions	+16.00C-117	•		
, nota conditions	9127/21, (10,-	yes	no	n/a
1 Location/	Identification	you	110	1170
a	Is the well visible and accessible?	-		
b	Is the well properly identified with the correct well ID?			
С	Is the well in a high traffic area and does the well require			
	protection from traffic?			
d	Is the drainage around the well acceptable? (no standing water,			
	nor is well located in obvious drainage flow path)	-		
2 0	0-1-1			
2 Protective				
а	Is the protective casing free from apparent damage and able to be secured?			
b	Is the casing free of degradation or deterioration?			
	Does the casing have a functioning weep hole?			
c d	Is the annular space between casings clear of debris and water,			
ď	or filled with pea gravel/sand?			
е	Is the well locked and is the lock in good condition?			
-	To the well looked and to the look in good condition.			
3 Surface p				
а	Is the well pad in good condition (not cracked or broken)?			
b	Is the well pad sloped away from the protective casing?			
C	Is the well pad in complete contact with the protective casing?			
d	Is the well pad in complete contact with the ground surface and			
	stable? (not undermined by erosion, animal burrows, and does not			
	move when stepped on)			
е	Is the pad surface clean (not covered with sediment or debris)?			
4 Internal c	asing			
а	Does the cap prevent entry of foreign material into the well?			
b	Is the casing free of kinks or bends, or any obstructions from			
	foreign objects (such as bailers)?	_		
С	Is the well properly vented for equilibration of air pressure?			
d	Is the survey point clearly marked on the inner casing?			
е	Is the depth of the well consistent with the original well log?			
f	Is the casing stable? (or does the pvc move easily when touched			2
	or can it be taken apart by hand due to lack of grout or use of slip			
	couplings in construction)			
5 Sampling	Groundwater Wells Only:			
а	Does well recharge adequately when purged?			
b	If dedicated sampling equipment installed, is it in good condition	_		
	and specified in the approved groundwater plan for the facility?			12000
С	Does the well require redevelopment (low flow, turbid)?			
6.0				
o Based on	your professional judgement, is the well construction / location			
	appropriate to 1) achieve the objectives of the Groundwater			
	Monitoring Program and 2) comply with the applicable regulatory			
	requirements?			
7 Corrective	e actions as needed, by date:			
7 Corrective	e actions as needed, by date:			

ite Name	17/ant Hammond			
ermit Number		4		
Vell ID	HGWC-1174			
ate, field conditions	967/21, Clec			1-
1 Location/I	刊をプル、 dentification	yes	no	n/a
	Is the well visible and accessible?			
a				
b	Is the well properly identified with the correct well ID? Is the well in a high traffic area and does the well require			-
С	protection from traffic?			
d	Is the drainage around the well acceptable? (no standing water,			
u	nor is well located in obvious drainage flow path)			
	nor is well located in obvious drainage flow patri)			
2 Protective	Casing			
а	Is the protective casing free from apparent damage and able to be			
	secured?			
b	Is the casing free of degradation or deterioration?			
C	Does the casing have a functioning weep hole?			
d	Is the annular space between casings clear of debris and water,	-		
_	or filled with pea gravel/sand?			
е	Is the well locked and is the lock in good condition?	_		
	•			
3 Surface pa				
а	Is the well pad in good condition (not cracked or broken)?			
b	Is the well pad sloped away from the protective casing?			
C	Is the well pad in complete contact with the protective casing?			
d	Is the well pad in complete contact with the ground surface and			
	stable? (not undermined by erosion, animal burrows, and does not			
	move when stepped on)			
е	Is the pad surface clean (not covered with sediment or debris)?			
4 Internal ca	sing			
a	Does the cap prevent entry of foreign material into the well?	i e columnia		
b	Is the casing free of kinks or bends, or any obstructions from			
D	foreign objects (such as bailers)?			
С	Is the well properly vented for equilibration of air pressure?	_		
d	Is the survey point clearly marked on the inner casing?			-
e	Is the depth of the well consistent with the original well log?			
f	Is the casing stable? (or does the pvc move easily when touched			
ı	or can it be taken apart by hand due to lack of grout or use of slip			
	couplings in construction)	_		
5 Sampling:	Groundwater Wells Only:			
а	Does well recharge adequately when purged?			
b	If dedicated sampling equipment installed, is it in good condition			
	and specified in the approved groundwater plan for the facility?			
С	Does the well require redevelopment (low flow, turbid)?			
6 Panad	vous professional judgement is the well assets within the selection			
	your professional judgement, is the well construction / location			
	appropriate to 1) achieve the objectives of the Groundwater			
	Monitoring Program and 2) comply with the applicable regulatory			
	requirements?	_		-
7 Corrective	actions as needed, by date:			
	,,			

APPENDIX C

Laboratory Analytical and Field Sampling Reports

LABORATORY ANALYTICAL RESULTS

August 2021

September 13, 2021

Joju Abraham Georgia Power-CCR 2480 Maner Road Atlanta, GA 30339

RE: Project: HAMMOND AP-4

Pace Project No.: 92555501

Dear Joju Abraham:

Enclosed are the analytical results for sample(s) received by the laboratory between August 13, 2021 and August 20, 2021. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

- Pace Analytical Services Asheville
- Pace Analytical Services Charlotte
- Pace Analytical Services Peachtree Corners, GA

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Nicole D'Oleo nicole.d'oleo@pacelabs.com

Micole D' oler

(704)875-9092

Project Manager

Enclosures

cc: Christine Hug, Geosyntec Consultants, Inc.

Kristen Jurinko

Thomas Kessler, Geosyntec

Whitney Law, Geosyntec Consultants Noelia Muskus, Geosyntec Consultants

Ms. Lauren Petty, Southern Company

Nardos Tilahun, GeoSyntec

Dawit Yifru, Geosyntec Consultants, Inc.

CERTIFICATIONS

Project: HAMMOND AP-4

Pace Project No.: 92555501

Pace Analytical Services Charlotte

9800 Kincey Ave. Ste 100, Huntersville, NC 28078 Louisiana/NELAP Certification # LA170028

North Carolina Drinking Water Certification #: 37706 North Carolina Field Services Certification #: 5342 North Carolina Wastewater Certification #: 12

Pace Analytical Services Asheville

2225 Riverside Drive, Asheville, NC 28804 Florida/NELAP Certification #: E87648

North Carolina Drinking Water Certification #: 37712

Pace Analytical Services Peachtree Corners

110 Technology Pkwy, Peachtree Corners, GA 30092 Florida DOH Certification #: E87315 Georgia DW Inorganics Certification #: 812

South Carolina Certification #: 99006001 Florida/NELAP Certification #: E87627 Kentucky UST Certification #: 84 Virginia/VELAP Certification #: 460221

North Carolina Wastewater Certification #: 40 South Carolina Certification #: 99030001 Virginia/VELAP Certification #: 460222

North Carolina Certification #: 381 South Carolina Certification #: 98011001

SAMPLE SUMMARY

Project: HAMMOND AP-4

Pace Project No.: 92555501

Lab ID	Sample ID	Matrix	Date Collected	Date Received
92555501001	HGWA-47	Water	08/12/21 11:08	08/13/21 14:55
92555501002	HGWA-48D	Water	08/12/21 11:30	08/13/21 14:55
92555501003	HGWA-111	Water	08/12/21 13:15	08/13/21 14:55
92555501004	HGWA-112	Water	08/12/21 12:55	08/13/21 14:55
92555501005	HGWA-113	Water	08/12/21 15:08	08/13/21 14:55
92555501006	HGWC-117A	Water	08/12/21 17:57	08/13/21 14:55
92555501007	HGWC-102	Water	08/13/21 17:16	08/16/21 13:25
92555501008	HGWC-105	Water	08/13/21 15:35	08/16/21 13:25
92555501009	HGWC-107	Water	08/13/21 14:10	08/16/21 13:25
92555501010	HGWC-109	Water	08/13/21 12:00	08/16/21 13:25
92555501011	HGWC-118	Water	08/13/21 14:18	08/16/21 13:25
92555501012	DUP-4	Water	08/13/21 00:00	08/16/21 13:25
92555501013	HGWC-101	Water	08/16/21 12:50	08/17/21 11:25
92555501014	HGWC-103	Water	08/16/21 10:50	08/17/21 11:25
92555501015	FB-4	Water	08/16/21 11:30	08/17/21 11:25
92555501016	EB-4	Water	08/16/21 11:30	08/17/21 11:25
92555501017	HGWC-117	Water	08/19/21 18:28	08/20/21 12:15

SAMPLE ANALYTE COUNT

Project: HAMMOND AP-4

Pace Project No.: 92555501

Lab ID	Sample ID	Method	Analysts	Analytes Reported
92555501001	HGWA-47	EPA 6010D	KH	
		EPA 6020B	CW1	13
		EPA 7470A	VB	1
		SM 2540C-2011	ALW	1
		EPA 300.0 Rev 2.1 1993	CDC	3
92555501002	HGWA-48D	EPA 6010D	KH	1
		EPA 6020B	CW1	13
		EPA 7470A	VB	1
		SM 2540C-2011	ALW	1
		EPA 300.0 Rev 2.1 1993	CDC	3
92555501003	HGWA-111	EPA 6010D	KH	1
		EPA 6020B	CW1	13
		EPA 7470A	VB	1
		SM 2540C-2011	ALW	1
		EPA 300.0 Rev 2.1 1993	CDC	3
92555501004	HGWA-112	EPA 6010D	KH	1
		EPA 6020B	CW1	13
		EPA 7470A	VB	1
		SM 2540C-2011	ALW	1
		EPA 300.0 Rev 2.1 1993	CDC	3
92555501005	HGWA-113	EPA 6010D	KH	1
		EPA 6020B	CW1	13
		EPA 7470A	VB	1
		SM 2540C-2011	ALW	1
		EPA 300.0 Rev 2.1 1993	CDC	3
92555501006	HGWC-117A	EPA 6010D	KH	1
		EPA 6020B	CW1	13
		EPA 7470A	VB	1
		SM 2540C-2011	ALW	1
		EPA 300.0 Rev 2.1 1993	CDC	3
92555501007	HGWC-102	EPA 6010D	KH	1
		EPA 6020B	CW1	13
		EPA 7470A	VB	1
		SM 2540C-2011	ALW	1
		EPA 300.0 Rev 2.1 1993	CDC	3
92555501008	HGWC-105	EPA 6010D	KH	1
		EPA 6020B	CW1	13

REPORT OF LABORATORY ANALYSIS

SAMPLE ANALYTE COUNT

Project: HAMMOND AP-4

Pace Project No.: 92555501

ab ID	Sample ID	Method	Analysts	Analytes Reported
		EPA 7470A		1
		SM 2540C-2011	ALW	1
		EPA 300.0 Rev 2.1 1993	CDC	3
2555501009	HGWC-107	EPA 6010D	KH	1
		EPA 6020B	CW1	13
		EPA 7470A	VB	1
		SM 2540C-2011	ALW	1
		EPA 300.0 Rev 2.1 1993	CDC	3
2555501010	HGWC-109	EPA 6010D	KH	1
		EPA 6020B	CW1	13
		EPA 7470A	VB	1
		SM 2540C-2011	ALW	1
		EPA 300.0 Rev 2.1 1993	CDC	3
2555501011	HGWC-118	EPA 6010D	KH	1
		EPA 6020B	CW1	13
		EPA 7470A	VB	1
		SM 2540C-2011	ALW	1
		EPA 300.0 Rev 2.1 1993	CDC	3
2555501012	DUP-4	EPA 6010D	KH	1
		EPA 6020B	CW1	13
		EPA 7470A	VB	1
		SM 2540C-2011	ALW	1
		EPA 300.0 Rev 2.1 1993	CDC	3
2555501013	HGWC-101	EPA 6010D	KH	1
		EPA 6020B	CW1	13
		EPA 7470A	VB	1
		SM 2540C-2011	ALW	1
		EPA 300.0 Rev 2.1 1993	CDC	3
2555501014	HGWC-103	EPA 6010D	KH	1
		EPA 6020B	CW1	13
		EPA 7470A	VB	1
		SM 2540C-2011	ALW	1
		EPA 300.0 Rev 2.1 1993	CDC	3
2555501015	FB-4	EPA 6010D	KH	1
		EPA 6020B	CW1	13
		EPA 7470A	VB	1

REPORT OF LABORATORY ANALYSIS

SAMPLE ANALYTE COUNT

Project: HAMMOND AP-4

Pace Project No.: 92555501

Lab ID	Sample ID	Method	Analysts	Analytes Reported
		EPA 300.0 Rev 2.1 1993	CDC	3
92555501016	EB-4	EPA 6010D	KH	1
		EPA 6020B	CW1	13
		EPA 7470A	VB	1
		SM 2540C-2011	ALW	1
		EPA 300.0 Rev 2.1 1993	CDC	3
92555501017	HGWC-117	EPA 6010D	DRB	1
		EPA 6020B	CW1	13
		EPA 7470A	VB	1
		SM 2540C-2011	ALW	1
		EPA 300.0 Rev 2.1 1993	CDC	3

PASI-A = Pace Analytical Services - Asheville PASI-C = Pace Analytical Services - Charlotte

PASI-GA = Pace Analytical Services - Peachtree Corners, GA

Project: HAMMOND AP-4

Pace Project No.: 92555501

Lab Sample ID Method	Client Sample ID Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
	_		Ullits	- Report Limit	Analyzeu	Qualifiers
2555501001	HGWA-47	00=0.1=				
	Performed by	CUSTOME R			08/16/21 10:09	
	pН	7.38	Std. Units		08/16/21 10:09	
EPA 6010D	Calcium	71.2	mg/L	1.0	08/18/21 18:58	M1
EPA 6020B	Barium	0.028	mg/L	0.0050	08/19/21 18:36	
EPA 6020B	Lithium	0.0029J	mg/L	0.030	08/19/21 18:36	
EPA 7470A	Mercury	0.000081J	mg/L	0.00020	08/27/21 13:25	В
SM 2540C-2011	Total Dissolved Solids	212	mg/L	10.0	08/18/21 08:31	
EPA 300.0 Rev 2.1 1993	Chloride	2.3	mg/L	1.0	08/20/21 02:58	
EPA 300.0 Rev 2.1 1993	Sulfate	1.4	mg/L	1.0	08/20/21 02:58	
2555501002	HGWA-48D					
	Performed by	CUSTOME R			08/16/21 10:09	
	рН	7.44	Std. Units		08/16/21 10:09	
EPA 6010D	Calcium	59.5	mg/L	1.0		
EPA 6020B	Arsenic	0.0013J	mg/L	0.0050	08/19/21 14:54	
EPA 6020B	Barium	0.10	mg/L	0.0050	08/19/21 14:54	
EPA 6020B	Boron	0.012J	mg/L	0.040	08/19/21 14:54	
EPA 6020B	Lithium	0.0037J	mg/L	0.030	08/19/21 14:54	
EPA 6020B	Molybdenum	0.0019J	mg/L	0.010	08/19/21 14:54	
EPA 7470A	Mercury	0.00018J	mg/L	0.00020	08/27/21 13:36	В
SM 2540C-2011	Total Dissolved Solids	234	mg/L	10.0	08/18/21 08:31	
EPA 300.0 Rev 2.1 1993	Chloride	2.2	mg/L	1.0	08/20/21 03:13	
EPA 300.0 Rev 2.1 1993	Fluoride	0.064J	mg/L	0.10	08/20/21 03:13	
EPA 300.0 Rev 2.1 1993	Sulfate	4.3	mg/L	1.0	08/20/21 03:13	
2555501003	HGWA-111					
	Performed by	CUSTOME R			08/16/21 10:09	
	рН	6.67	Std. Units		08/16/21 10:09	
PA 6010D	Calcium	45.4	mg/L	1.0	08/18/21 19:22	
PA 6020B	Barium	0.029	mg/L	0.0050	08/19/21 18:42	
PA 6020B	Lithium	0.0020J	mg/L	0.030	08/19/21 18:42	
SM 2540C-2011	Total Dissolved Solids	157	mg/L	10.0	08/18/21 08:31	
EPA 300.0 Rev 2.1 1993	Chloride	2.5	mg/L	1.0	08/20/21 03:58	
EPA 300.0 Rev 2.1 1993	Sulfate	1.3	mg/L	1.0	08/20/21 03:58	
2555501004	HGWA-112					
	Performed by	CUSTOME R			08/16/21 10:09	
	pH	5.50	Std. Units		08/16/21 10:09	
EPA 6010D	Calcium	6.9	mg/L		08/18/21 19:36	
PA 6020B	Barium	0.028	mg/L	0.0050	08/19/21 18:48	
PA 6020B	Chromium	0.0041J	mg/L	0.0050	08/19/21 18:48	_
PA 7470A	Mercury	0.00011J	mg/L	0.00020	08/27/21 13:42	В
SM 2540C-2011	Total Dissolved Solids	63.0	mg/L	10.0	08/18/21 08:31	
EPA 300.0 Rev 2.1 1993	Chloride	4.4	mg/L	1.0	08/20/21 04:13	

Project: HAMMOND AP-4

Pace Project No.: 92555501

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
2555501005	HGWA-113					
	Performed by	CUSTOME			08/16/21 10:10	
	рН	R 6.08	Std. Units		08/16/21 10:10	
EPA 6010D	Calcium	8.4	mg/L	1.0	08/18/21 19:41	
EPA 6020B	Barium	0.033	mg/L	0.0050	08/19/21 18:54	
EPA 6020B	Lithium	0.00094J	mg/L	0.030	08/19/21 18:54	
EPA 6020B	Selenium	0.0023J	mg/L	0.0050	08/19/21 18:54	
SM 2540C-2011	Total Dissolved Solids	92.0	mg/L	10.0		
EPA 300.0 Rev 2.1 1993	Chloride	1.5	mg/L	1.0		
EPA 300.0 Rev 2.1 1993	Fluoride	0.16	mg/L	0.10	08/20/21 04:28	
EPA 300.0 Rev 2.1 1993	Sulfate	10.0	mg/L	1.0	08/20/21 04:28	
2555501006	HGWC-117A					
	Performed by	CUSTOME			08/16/21 10:10	
	рН	R 6.27	Std. Units		08/16/21 10:10	
EPA 6010D	Calcium	50.7	mg/L	1.0		
EPA 6020B	Barium	0.079	mg/L	0.0050		
EPA 6020B	Boron	0.34	mg/L	0.040	08/20/21 15:22	
EPA 6020B	Cadmium	0.00016J	mg/L	0.00050	08/20/21 15:22	
EPA 6020B	Cobalt	0.0024J	mg/L	0.0050		
EPA 6020B	Lithium	0.0036J	mg/L	0.030	08/20/21 15:22	
EPA 7470A	Mercury	0.000094J	mg/L	0.00020	08/27/21 13:53	В
SM 2540C-2011	Total Dissolved Solids	256	mg/L	10.0		J
EPA 300.0 Rev 2.1 1993	Chloride	6.3	mg/L	1.0		
EPA 300.0 Rev 2.1 1993	Sulfate	64.6	mg/L	1.0	08/20/21 05:13	
2555501007	HGWC-102					
	Performed by	CUSTOME			08/16/21 17:34	
	рН	R 5.45	Std. Units		08/16/21 17:34	
EPA 6010D	Calcium	119	mg/L	1.0	08/18/21 19:50	
EPA 6020B	Barium	0.026	mg/L	0.0050	08/20/21 15:28	
PA 6020B	Boron	2.4	mg/L	0.040		
EPA 6020B	Cadmium	0.00069	mg/L	0.00050	08/20/21 15:28	
PA 6020B	Cobalt	0.00085J	mg/L	0.0050	08/20/21 15:28	
PA 6020B	Lithium	0.0011J	mg/L	0.030		
EPA 7470A	Mercury	0.00010J	mg/L		08/27/21 13:55	В
SM 2540C-2011	Total Dissolved Solids	647	mg/L		08/19/21 15:09	
EPA 300.0 Rev 2.1 1993	Chloride	6.0	mg/L		08/20/21 13:28	
EPA 300.0 Rev 2.1 1993	Sulfate	248	mg/L		08/20/21 14:30	
2555501008	HGWC-105					
	Performed by	CUSTOME			08/16/21 17:34	
	рН	R 6.44	Std. Units		08/16/21 17:34	
EPA 6010D	Calcium	102	mg/L	1.0	08/18/21 17:54	
EPA 6020B	Barium	0.073	mg/L	0.0050		
EPA 6020B	Boron	1.2	mg/L	0.040		
	201011	1.2	g/ L	0.040	55/20/21 15.55	

REPORT OF LABORATORY ANALYSIS

Project: HAMMOND AP-4

Pace Project No.: 92555501

Lab Sample ID	Client Sample ID	5 "		D (1) (1)		0 110
Method	Parameters —	Result _	Units	Report Limit	Analyzed	Qualifier
2555501008	HGWC-105					
EPA 7470A	Mercury	0.00022	mg/L	0.00020		В
SM 2540C-2011	Total Dissolved Solids	441	mg/L	10.0	08/19/21 15:10	
PA 300.0 Rev 2.1 1993	Chloride	3.7	mg/L	1.0	08/20/21 14:15	
EPA 300.0 Rev 2.1 1993	Sulfate	142	mg/L	3.0	08/20/21 14:45	
2555501009	HGWC-107					
	Performed by	CUSTOME R			08/16/21 17:34	
	pН	6.11	Std. Units		08/16/21 17:34	
PA 6010D	Calcium	57.8	mg/L	1.0	08/18/21 20:00	
PA 6020B	Barium	0.033	mg/L	0.0050	08/20/21 15:39	
PA 6020B	Boron	0.73	mg/L	0.040	08/20/21 15:39	
PA 6020B	Lithium	0.00084J	mg/L	0.030		
PA 7470A		0.00084J	•	0.00020	08/27/21 14:01	R
	Mercury		mg/L			ט
M 2540C-2011	Total Dissolved Solids	291	mg/L	10.0	08/19/21 15:10	
PA 300.0 Rev 2.1 1993	Chloride	3.1	mg/L	1.0	08/20/21 19:31	
PA 300.0 Rev 2.1 1993	Sulfate	112	mg/L	2.0	08/21/21 01:35	
555501010	HGWC-109	0070.15				
	Performed by	CUSTOME R			08/16/21 17:34	
	Hq	6.71	Std. Units		08/16/21 17:34	
PA 6010D	, Calcium	43.5	mg/L	1.0		
PA 6020B	Arsenic	0.0019J	mg/L	0.0050	08/20/21 15:45	
PA 6020B	Barium	0.080	mg/L	0.0050	08/20/21 15:45	
PA 6020B	Boron	0.24	mg/L	0.040	08/20/21 15:45	
PA 6020B	Cobalt	0.0011J	mg/L	0.0050	08/20/21 15:45	
PA 7470A	Mercury	0.00080J	mg/L	0.00020		D
M 2540C-2011	Total Dissolved Solids	189	•		08/19/21 15:10	Ь
			mg/L	10.0		
PA 300.0 Rev 2.1 1993	Chloride	4.0	mg/L	1.0		
PA 300.0 Rev 2.1 1993	Fluoride	0.086J	mg/L	0.10	08/20/21 19:46	
PA 300.0 Rev 2.1 1993	Sulfate	24.4	mg/L	1.0	08/20/21 19:46	
555501011	HGWC-118	0::0=0::=				
	Performed by	CUSTOME R			08/16/21 17:35	
	рН	6.78	Std. Units		08/16/21 17:35	
PA 6010D	Calcium	84.3	mg/L	1.0	08/18/21 20:09	
PA 6020B	Barium	0.043	mg/L	0.0050	08/20/21 15:51	
PA 6020B	Boron	0.59	mg/L	0.040		
PA 6020B	Lithium	0.0017J	mg/L		08/20/21 15:51	
PA 7470A	Mercury	0.000081J	mg/L	0.00020		В
M 2540C-2011	Total Dissolved Solids	336	mg/L	10.0		-
PA 300.0 Rev 2.1 1993	Chloride	4.0	mg/L		08/20/21 20:01	
PA 300.0 Rev 2.1 1993 PA 300.0 Rev 2.1 1993	Fluoride	0.075J	mg/L	0.10		
PA 300.0 Rev 2.1 1993 PA 300.0 Rev 2.1 1993	Sulfate	75.1	mg/L		08/20/21 20:01	
		75.1	mg/L	1.0	55/20/21 20.01	
555501012	DUP-4	44 =	c /I	4.0	00/40/04 00 44	
PA 6010D	Calcium	44.7	mg/L		08/18/21 20:14	
PA 6020B	Arsenic	0.0021J	mg/L	0.0050	08/20/21 15:56	

REPORT OF LABORATORY ANALYSIS

Project: HAMMOND AP-4

Pace Project No.: 92555501

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
2555501012	DUP-4					
EPA 6020B	Barium	0.084	mg/L	0.0050	08/20/21 15:56	
EPA 6020B	Boron	0.24	mg/L	0.040	08/20/21 15:56	
EPA 6020B	Cobalt	0.0012J	mg/L	0.0050	08/20/21 15:56	
EPA 6020B	Lithium	0.00077J	mg/L	0.030	08/20/21 15:56	
SM 2540C-2011	Total Dissolved Solids	196	mg/L	10.0	08/19/21 15:10	
PA 300.0 Rev 2.1 1993	Chloride	4.0	mg/L	1.0	08/20/21 20:46	
EPA 300.0 Rev 2.1 1993	Fluoride	0.087J	mg/L	0.10	08/20/21 20:46	
PA 300.0 Rev 2.1 1993	Sulfate	24.3	mg/L	1.0	08/20/21 20:46	
2555501013	HGWC-101					
	Performed by	CUSTOME R			08/17/21 16:27	
	рН	5.40	Std. Units		08/17/21 16:27	
PA 6010D	Calcium	22.8	mg/L	1.0	08/18/21 20:19	
PA 6020B	Barium	0.037	mg/L	0.0050	08/20/21 16:02	
EPA 6020B	Boron	0.13	mg/L	0.040	08/20/21 16:02	
EPA 6020B	Cadmium	0.00015J	mg/L	0.00050	08/20/21 16:02	
PA 6020B	Cobalt	0.0026J	mg/L	0.0050	08/20/21 16:02	
PA 7470A	Mercury	0.000099J	mg/L	0.00020	08/27/21 14:12	В
SM 2540C-2011	Total Dissolved Solids	206	mg/L	10.0	08/19/21 15:11	
PA 300.0 Rev 2.1 1993	Chloride	5.4	mg/L	1.0	08/24/21 20:58	
PA 300.0 Rev 2.1 1993	Sulfate	72.1	mg/L	2.0	08/25/21 09:20	
2555501014	HGWC-103					
	Performed by	CUSTOME R			08/17/21 16:28	
	рН	5.59	Std. Units		08/17/21 16:28	
PA 6010D	Calcium	124	mg/L	1.0	08/18/21 20:33	
PA 6020B	Barium	0.037	mg/L	0.0050	08/20/21 16:08	
PA 6020B	Boron	3.2	mg/L	0.040	08/20/21 16:08	
PA 6020B	Cadmium	0.00081	mg/L	0.00050	08/20/21 16:08	
PA 6020B	Cobalt	0.0022J	mg/L	0.0050	08/20/21 16:08	
PA 6020B	Lithium	0.0016J	mg/L	0.030	08/20/21 16:08	
EPA 7470A	Mercury	0.00027	mg/L	0.00020	08/27/21 14:15	В
SM 2540C-2011	Total Dissolved Solids	672	mg/L	20.0	08/19/21 15:11	
EPA 300.0 Rev 2.1 1993	Chloride	10.4	mg/L	1.0	08/22/21 23:02	
PA 300.0 Rev 2.1 1993	Sulfate	354	mg/L	8.0	08/23/21 12:30	
2555501015	FB-4		_			_
EPA 7470A	Mercury	0.00012J	mg/L	0.00020	08/27/21 14:18	В
2555501016	EB-4					
EPA 7470A	Mercury	0.00012J	mg/L	0.00020	08/27/21 14:26	В
2555501017	HGWC-117					
	Performed by	CUSTOME R			08/20/21 15:24	
	рН	6.04	Std. Units		08/20/21 15:24	
PA 6010D	Calcium	40.9	mg/L	1.0	08/24/21 19:27	
EPA 6020B	Barium	0.041	mg/L	0.0050	08/27/21 13:08	

REPORT OF LABORATORY ANALYSIS

Project: HAMMOND AP-4

Pace Project No.: 92555501

Lab Sample ID Method	Client Sample ID Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
92555501017	HGWC-117					
EPA 6020B	Beryllium	0.000056J	mg/L	0.00050	08/27/21 13:08	
EPA 6020B	Boron	0.78	mg/L	0.040	08/27/21 13:08	
EPA 6020B	Cadmium	0.0012	mg/L	0.00050	08/27/21 13:08	
EPA 6020B	Cobalt	0.017	mg/L	0.0050	08/27/21 13:08	
EPA 6020B	Lithium	0.0017J	mg/L	0.030	08/27/21 13:08	
EPA 7470A	Mercury	0.00030	mg/L	0.00020	08/27/21 14:29	В
SM 2540C-2011	Total Dissolved Solids	253	mg/L	10.0	08/25/21 19:44	
EPA 300.0 Rev 2.1 1993	Chloride	4.0	mg/L	1.0	08/27/21 07:20	
EPA 300.0 Rev 2.1 1993	Sulfate	108	mg/L	2.0	08/27/21 18:04	

Project: HAMMOND AP-4

Pace Project No.: 92555501

Date: 09/13/2021 09:36 AM

Sample: HGWA-47	Lab ID:	92555501001	Collecte	ed: 08/12/21	11:08	Received: 08/	/13/21 14:55 Ma	atrix: Water	
_			Report						
Parameters	Results -	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Charlotte						
Performed by	CUSTOME R				1		08/16/21 10:09		
рН	7.38	Std. Units			1		08/16/21 10:09		
6010D ATL ICP	•	Method: EPA 6 lytical Services	'			PA 3010A			
Calcium	71.2	mg/L	1.0	0.12	1	08/18/21 12:15	08/18/21 18:58	7440-70-2	M1
6020 MET ICPMS	Analytical	Method: EPA 6	020B Pre	paration Met	hod: EF	PA 3005A			
	Pace Ana	lytical Services	- Peachtre	e Corners, C	€A				
Antimony	ND	mg/L	0.0030	0.00078	1	08/18/21 12:41	08/19/21 18:36	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.0011	1	08/18/21 12:41	08/19/21 18:36	7440-38-2	
Barium	0.028	mg/L	0.0050	0.00067	1	08/18/21 12:41	08/19/21 18:36	7440-39-3	
Beryllium	ND	mg/L	0.00050	0.000054	1	08/18/21 12:41	08/19/21 18:36	7440-41-7	
Boron	ND	mg/L	0.040	0.0086	1	08/18/21 12:41	08/19/21 18:36	7440-42-8	
Cadmium	ND	mg/L	0.00050	0.00011	1	08/18/21 12:41	08/19/21 18:36	7440-43-9	
Chromium	ND	mg/L	0.0050	0.0011	1	08/18/21 12:41	08/19/21 18:36	7440-47-3	
Cobalt	ND	mg/L	0.0050	0.00039	1	08/18/21 12:41	08/19/21 18:36	7440-48-4	
Lead	ND	mg/L	0.0010	0.00089	1	08/18/21 12:41	08/19/21 18:36	7439-92-1	
Lithium	0.0029J	mg/L	0.030	0.00073	1	08/18/21 12:41	08/19/21 18:36	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.00074	1	08/18/21 12:41	08/19/21 18:36	7439-98-7	
Selenium	ND	mg/L	0.0050	0.0014	1	08/18/21 12:41	08/19/21 18:36	7782-49-2	
Thallium	ND	mg/L	0.0010	0.00018	1		08/19/21 18:36		
7470 Mercury	Analytical	Method: EPA 7	7470A Prep	paration Met	hod: EF	PA 7470A			
	Pace Ana	lytical Services	- Peachtre	e Corners, C	€A				
Mercury	0.000081J	mg/L	0.00020	0.000078	1	08/26/21 15:30	08/27/21 13:25	7439-97-6	В
2540C Total Dissolved Solids	-	Method: SM 2		e Corners, C	S A				
Total Dissolved Solids	212	mg/L	10.0	10.0	1		08/18/21 08:31		
300.0 IC Anions 28 Days	-	Method: EPA 3		2.1 1993					
Chloride	2.3	mg/L	1.0	0.60	1		08/20/21 02:58	16887-00-6	
Fluoride	ND	mg/L	0.10	0.050	1		08/20/21 02:58		
Sulfate		•			1				
Suirate	1.4	mg/L	1.0	0.50	1		08/20/21 02:58	14808-79-8	

Project: HAMMOND AP-4

Pace Project No.: 92555501

Date: 09/13/2021 09:36 AM

Sample: HGWA-48D	Lab ID:	92555501002	Collecte	ed: 08/12/21	11:30	Received: 08/	/13/21 14:55 N	latrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Charlotte	;					
Performed by	CUSTOME R				1		08/16/21 10:09)	
рН	7.44	Std. Units			1		08/16/21 10:09)	
6010D ATL ICP	•	Method: EPA 6 lytical Services				PA 3010A			
Calcium	59.5	mg/L	1.0	0.12	1	08/18/21 12:15	08/18/21 19:17	7440-70-2	
6020 MET ICPMS	•	Method: EPA 6 lytical Services				PA 3005A			
Antimony	ND	mg/L	0.0030	0.00078	1	08/18/21 12:41	08/19/21 14:54	7440-36-0	
Arsenic	0.0013J	mg/L	0.0050	0.0011	1	08/18/21 12:41	08/19/21 14:54	7440-38-2	
Barium	0.10	mg/L	0.0050	0.00067	1	08/18/21 12:41	08/19/21 14:54	7440-39-3	
Beryllium	ND	mg/L	0.00050	0.000054	1	08/18/21 12:41	08/19/21 14:54		
Boron	0.012J	mg/L	0.040	0.0086	1	08/18/21 12:41			
Cadmium	ND	mg/L	0.00050	0.00011	1	08/18/21 12:41			
Chromium	ND	mg/L	0.0050	0.0011	1	08/18/21 12:41			
Cobalt	ND	mg/L	0.0050	0.00039	1	08/18/21 12:41	08/19/21 14:54		
Lead	ND	mg/L	0.0010	0.00089	1	08/18/21 12:41	08/19/21 14:54		
Lithium	0.0037J	mg/L	0.030	0.00073	1	08/18/21 12:41			
Molybdenum	0.0019J	mg/L	0.010	0.00074	1	08/18/21 12:41			
Selenium	ND	mg/L	0.0050	0.0014	1	08/18/21 12:41	08/19/21 14:54		
Thallium	ND	mg/L	0.0010	0.00018	1	08/18/21 12:41			
7470 Mercury	Analytical	Method: EPA 7	470A Prer	paration Meth	nod: EF	PA 7470A			
,,	-	lytical Services							
Mercury	0.00018J	mg/L	0.00020	0.000078	1	08/26/21 15:30	08/27/21 13:36	7439-97-6	В
2540C Total Dissolved Solids	•	Method: SM 25 lytical Services		e Corners, G	iΑ				
Total Dissolved Solids	234	mg/L	10.0	10.0	1		08/18/21 08:31		
300.0 IC Anions 28 Days	•	Method: EPA 3							
Chloride	2.2	mg/L	1.0	0.60	1		08/20/21 03:13	16887 00 6	
Fluoride	2.2 0.064J	mg/L	0.10	0.60	1		08/20/21 03:13		
Sulfate	4.3	J			1				
Juliale	4.3	mg/L	1.0	0.50	1		08/20/21 03:13	14000-79-8	

Project: HAMMOND AP-4

Pace Project No.: 92555501

Date: 09/13/2021 09:36 AM

Performed by	Sample: HGWA-111	Lab ID:	92555501003	Collecte	ed: 08/12/21	13:15	Received: 08/	/13/21 14:55 N	Matrix: Water	
Field Data				Report						
Pare Analytical Services - Charlotte Performed by CUSTOME	Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Performed by	Field Data	Analytical	Method:							
PH 6.67 Std. Units 1 08/16/21 10:09 6010D ATL ICP		Pace Ana	lytical Services	- Charlotte						
PH Analytical Method: EPA 6010D Preparation Method: EPA 3010A Preparation Method: EPA	Performed by					1		08/16/21 10:0	9	
Pace Analytical Services - Peachtree Corners, GA	рН		Std. Units			1		08/16/21 10:0	9	
6020 MET ICPMS Analytical Method: EPA 6020B Preparation Method: EPA 3005A Pace Analytical Services - Peachtree Corners, GA Antimony ND mg/L ND mg/L 0.0030 0.00078 1 08/18/21 12:41 08/19/21 18:42 7440-36-0 ND mg/L 0.0050 0.00011 1 08/18/21 12:41 08/19/21 18:42 7440-38-2 ND mg/L 0.0050 0.00067 1 08/18/21 12:41 08/19/21 18:42 7440-38-2 ND mg/L 0.0050 0.00067 1 08/18/21 12:41 08/19/21 18:42 7440-38-2 ND mg/L 0.0050 0.00067 1 08/18/21 12:41 08/19/21 18:42 7440-38-2 ND mg/L 0.0050 0.00065 1 08/18/21 12:41 08/19/21 18:42 7440-34-7 ND mg/L 0.0050 0.00011 1 08/18/21 12:41 08/19/21 18:42 7440-41-7 ND mg/L 0.0050 0.00011 1 08/18/21 12:41 08/19/21 18:42 7440-43-9 ND mg/L 0.0050 0.00011 1 08/18/21 12:41 08/19/21 18:42 7440-43-9 ND mg/L 0.0050 0.00011 1 08/18/21 12:41 08/19/21 18:42 7440-43-9 ND mg/L 0.0050 0.00039 1 08/18/21 12:41 08/19/21 18:42 7440-43-9 ND mg/L 0.0050 0.00039 1 08/18/21 12:41 08/19/21 18:42 7440-43-9 ND mg/L 0.0050 0.00039 1 08/18/21 12:41 08/19/21 18:42 7439-92-1 ND mg/L 0.0010 0.00088 1 08/18/21 12:41 08/19/21 18:42 7439-92-1 ND mg/L 0.0050 0.00073 1 08/18/21 12:41 08/19/21 18:42 7439-92-1 ND mg/L 0.0050 0.00073 1 08/18/21 12:41 08/19/21 18:42 7439-92-7 ND mg/L 0.0010 0.00073 1 08/18/21 12:41 08/19/21 18:42 7439-92-7 ND mg/L 0.0010 0.00018 1 08/18/21 12:41 08/19/21 18:42 7439-92-7 ND mg/L 0.0010 0.00018 1 08/18/21 12:41 08/19/21 18:42 7439-92-7 ND mg/L 0.0010 0.00018 1 08/18/21 12:41 08/19/21 18:42 7439-92-7 ND mg/L 0.0010 0.00018 1 08/18/21 12:41 08/19/21 18:42 7440-28-0 ND mg/L 0.0010 0.00018 1 08/18/21 12:41 08/19/21 18:42 7440-28-0 ND mg/L 0.0010 0.00018 1 08/18/21 12:41 08/19/21 18:42 7440-28-0 ND mg/L 0.0010 0.00018 1 08/18/21 12:41 08/19/21 18:42 7440-28-0 ND mg/L 0.0010 0.00018 1 08/18/21 12:41 08/19/21 18:42 7440-28-0 ND mg/L 0.00018 ND mg/L 0.00018 1 08/18/21 12:41 08/19/21 18:42 7440-28-0 ND mg/L 0.00018 ND mg/L 0.00018 ND	6010D ATL ICP	•					PA 3010A			
Pace Analytical Services - Peachtree Corners, GA	Calcium	45.4	mg/L	1.0	0.12	1	08/18/21 12:15	08/18/21 19:2	2 7440-70-2	
Arsenic ND mg/L 0.0050 0.0011 1 08/18/21 12:41 08/19/21 18:42 7440-38-2 Barium 0.029 mg/L 0.0050 0.00067 1 08/18/21 12:41 08/19/21 18:42 7440-39-3 Barium 0.029 mg/L 0.0050 0.00060 1 08/18/21 12:41 08/19/21 18:42 7440-39-3 Barium 0.0050 0.00050 0.00054 1 08/18/21 12:41 08/19/21 18:42 7440-39-3 Barium 0.0050 0.00050 0.0011 1 08/18/21 12:41 08/19/21 18:42 7440-41-3 Chromium ND mg/L 0.0050 0.0011 1 08/18/21 12:41 08/19/21 18:42 7440-44-3-9 Chromium ND mg/L 0.0050 0.0011 1 08/18/21 12:41 08/19/21 18:42 7440-44-3-9 Chromium ND mg/L 0.0050 0.0011 1 08/18/21 12:41 08/19/21 18:42 7440-44-3-3 Chromium ND Mg/L 0.0050 0.00073 1 08/18/21 12:41 08/19/21 18:42 7440-44-3 Chromium	6020 MET ICPMS	•					PA 3005A			
Barium	Antimony	ND	mg/L	0.0030	0.00078	1	08/18/21 12:41	08/19/21 18:4	2 7440-36-0	
Beryllium	Arsenic	ND	mg/L	0.0050	0.0011	1	08/18/21 12:41	08/19/21 18:4	2 7440-38-2	
Beryllium	Barium	0.029	mg/L	0.0050	0.00067	1	08/18/21 12:41	08/19/21 18:4	2 7440-39-3	
ND mg/L 0.0050 0.00011 1 08/18/21 12:41 08/19/21 18:42 7440-43-9 Chromium ND mg/L 0.0050 0.0011 1 08/18/21 12:41 08/19/21 18:42 7440-47-3 Cobalt ND mg/L 0.0050 0.00039 1 08/18/21 12:41 08/19/21 18:42 7440-48-4 Lead ND mg/L 0.0010 0.00089 1 08/18/21 12:41 08/19/21 18:42 7439-92-1 Lithium 0.0020J mg/L 0.030 0.00073 1 08/18/21 12:41 08/19/21 18:42 7439-92-1 12:41 08/19/21 18:42 7439-92-1 12:41 08/19/21 18:42 7439-93-2 12:41 12:41 08/19/21 18:42 7439-93-2 12:41 08/19/21 18:42 7439-93-2 12:41 12:41 08/19/21 18:42 7439-93-2 12:41 12:41 08/19/21 18:42 7439-93-2 12:41 12:41 08/19/21 18:42 7439-93-2 13:41 12:41 13:41	Beryllium	ND	-	0.00050	0.000054	1	08/18/21 12:41	08/19/21 18:4	2 7440-41-7	
ND mg/L 0.0050 0.0011 1 08/18/21 12:41 08/19/21 18:42 7440-47-3 18.0050 0.0011 1 08/18/21 12:41 08/19/21 18:42 7440-47-3 18.0050 0.0011 1 0.0011 0.00089 1 0.0019/21 18:42 7440-48-4 0.0010 0.00089 1 0.0019/21 18:42 7439-92-1 0.0010 0.00089 1 0.0019/21 18:42 7439-92-1 0.0010 0.00073 1 0.0019/21 18:42 7439-93-2 0.0010 0.00073 1 0.0018/21 12:41 0.0019/21 18:42 7439-93-2 0.0010 0.00073 1 0.0018/21 12:41 0.0019/21 18:42 7439-93-2 0.0010 0.00014 1 0.0018/21 12:41 0.0019/21 18:42 7439-93-2 0.0010 0.00018 1 0.0018/21 12:41 0.0019/21 18:42 7440-28-0 0.0010 0.00018 1 0.0018/21 12:41 0.0019/21 18:42 7440-28-0 0.0010 0.00018 1 0.0019/21 18:42 0.0019/21 18:42 0.0019/21 0.0019/2	Boron	ND	mg/L	0.040	0.0086	1	08/18/21 12:41	08/19/21 18:4	2 7440-42-8	
Chromium	Cadmium	ND	mg/L	0.00050	0.00011	1	08/18/21 12:41	08/19/21 18:4	2 7440-43-9	
Cobalt ND mg/L 0.0050 0.00039 1 08/18/21 12:41 08/19/21 18:42 7440-48-4 Lead ND mg/L 0.0010 0.00089 1 08/18/21 12:41 08/19/21 18:42 7440-48-4 Lead ND mg/L 0.0010 0.00089 1 08/18/21 12:41 08/19/21 18:42 7439-92-1 Lithium 0.0020J mg/L 0.030 0.00073 1 08/18/21 12:41 08/19/21 18:42 7439-93-2 Molybdenum ND mg/L 0.010 0.00074 1 08/18/21 12:41 08/19/21 18:42 7439-93-2 Molybdenum ND mg/L 0.0050 0.0014 1 08/18/21 12:41 08/19/21 18:42 7439-98-7 Selenium ND mg/L 0.0050 0.0014 1 08/18/21 12:41 08/19/21 18:42 7439-98-7 Selenium ND mg/L 0.0010 0.00018 1 08/18/21 12:41 08/19/21 18:42 7439-98-7 Pace Analytical Method: EPA 7470A Preparation Method: EPA 7470A Preparation Method: EPA 7470A Preparation Method: EPA 7470A Preparation Method:	Chromium	ND	mg/L	0.0050	0.0011	1	08/18/21 12:41	08/19/21 18:4	2 7440-47-3	
ND mg/L 0.0010 0.00089 1 08/18/21 12:41 08/19/21 18:42 7439-92-1 12/14 08/19/21 18:42 7439-92-1 0.0010 0.00073 1 08/18/21 12:41 08/19/21 18:42 7439-93-2 0.0010 0.00074 1 08/18/21 12:41 08/19/21 18:42 7439-93-2 0.0010 0.00074 1 0.0010/21 12:41 08/19/21 18:42 7439-93-7 0.0010 0.00074 1 0.0010/21 12:41 0.0010/21 18:42 7439-93-7 0.0010 0.00018 1 0.0010/21 12:41 0.0010/21 18:42 7440-28-0 0.0010 0.00018 1 0.0010/21 12:41 0.0010/21 18:42 7440-28-0 0.0010 0.00018 1 0.0010/21 12:41 0.0010/21 18:42 7440-28-0 0.0010/21 12:41 0.0010/21 18:42 0.0010/21 18	Cobalt	ND	-	0.0050	0.00039	1	08/18/21 12:41	08/19/21 18:4	2 7440-48-4	
Lithium 0.0020J mg/L 0.030 0.00073 1 08/18/21 12:41 08/19/21 18:42 7439-93-2 Molybdenum ND mg/L 0.010 0.00074 1 08/18/21 12:41 08/19/21 18:42 7439-98-7 Selenium ND mg/L 0.0050 0.0014 1 08/18/21 12:41 08/19/21 18:42 748-99-2 Thallium ND mg/L 0.0010 0.00018 1 08/18/21 12:41 08/19/21 18:42 7440-28-0 7470 Mercury Analytical Method: EPA 7470A Preparation Method: EPA 7470A Pace Analytical Services - Peachtree Corners, GA Mercury ND mg/L 0.00020 0.00078 1 08/26/21 15:30 08/27/21 13:39 7439-97-6 B 2540C Total Dissolved Solids Analytical Method: SM 2540C-2011 Pace Analytical Services - Peachtree Corners, GA Total Dissolved Solids 157 mg/L 10.0 10.0 1 08/18/21 08:31 300.0 IC Anions 28 Days Analytical Method: EPA 300.0 Rev 2.1 1993 Pace Analytical Services - Asheville Chloride 2.5 mg/L 1.0 0.60 1 08/20/21 03:58	Lead	ND		0.0010	0.00089	1	08/18/21 12:41	08/19/21 18:4	2 7439-92-1	
Molybdenum	Lithium	0.0020J		0.030	0.00073	1	08/18/21 12:41	08/19/21 18:4	2 7439-93-2	
ND mg/L 0.0050 0.0014 1 08/18/21 12:41 08/19/21 18:42 7782-49-2 ND mg/L 0.0010 0.00018 1 08/18/21 12:41 08/19/21 18:42 7440-28-0			Ū							
Thallium ND mg/L 0.0010 0.00018 1 08/18/21 12:41 08/19/21 18:42 7440-28-0 7470 Mercury Analytical Method: EPA 7470A Preparation Method: EPA 7470A Pace Analytical Services - Peachtree Corners, GA Mercury ND mg/L 0.00020 0.000078 1 08/26/21 15:30 08/27/21 13:39 7439-97-6 B 2540C Total Dissolved Solids Analytical Method: SM 2540C-2011 Pace Analytical Services - Peachtree Corners, GA Total Dissolved Solids 157 mg/L 10.0 10.0 1 08/18/21 08:31 300.0 IC Anions 28 Days Analytical Method: EPA 300.0 Rev 2.1 1993 Pace Analytical Services - Asheville Chloride 2.5 mg/L 1.0 0.60 1 08/20/21 03:58 16887-00-6 Fluoride ND mg/L 0.10 0.050 1 08/20/21 03:58 16984-48-8	•	ND	ū	0.0050	0.0014	1	08/18/21 12:41	08/19/21 18:4	2 7782-49-2	
Pace Analytical Services - Peachtree Corners, GA Mercury ND mg/L 0.00020 0.000078 1 08/26/21 15:30 08/27/21 13:39 7439-97-6 B 2540C Total Dissolved Solids Analytical Method: SM 2540C-2011 Pace Analytical Services - Peachtree Corners, GA Total Dissolved Solids 157 mg/L 10.0 10.0 1 08/18/21 08:31 300.0 IC Anions 28 Days Analytical Method: EPA 300.0 Rev 2.1 1993 Pace Analytical Services - Asheville Chloride 2.5 mg/L 1.0 0.60 1 08/20/21 03:58 16887-00-6 ND mg/L 0.10 0.050 1 08/20/21 03:58 16984-48-8			ū							
Mercury ND mg/L 0.00020 0.000078 1 08/26/21 15:30 08/27/21 13:39 7439-97-6 B 2540C Total Dissolved Solids Analytical Method: SM 2540C-2011 Pace Analytical Services - Peachtree Corners, GA Total Dissolved Solids 157 mg/L 10.0 10.0 1 08/18/21 08:31 300.0 IC Anions 28 Days Analytical Method: EPA 300.0 Rev 2.1 1993 Pace Analytical Services - Asheville Chloride 2.5 mg/L 1.0 0.60 1 Fluoride ND mg/L 0.10 0.050 1 08/20/21 03:58 16887-00-6 ND mg/L 0.10 0.050 1	7470 Mercury	Analytical	Method: EPA 7	7470A Prep	paration Meth	nod: EF	PA 7470A			
2540C Total Dissolved Solids Analytical Method: SM 2540C-2011		Pace Ana	lytical Services	- Peachtre	e Corners, G	Α				
Pace Analytical Services - Peachtree Corners, GA Total Dissolved Solids 157 mg/L 10.0 10.0 1 08/18/21 08:31 300.0 IC Anions 28 Days Analytical Method: EPA 300.0 Rev 2.1 1993 Pace Analytical Services - Asheville Chloride 2.5 mg/L 1.0 0.60 1 08/20/21 03:58 16887-00-6 Fluoride ND mg/L 0.10 0.050 1 08/20/21 03:58 16984-48-8	Mercury	ND	mg/L	0.00020	0.000078	1	08/26/21 15:30	08/27/21 13:3	9 7439-97-6	В
300.0 IC Anions 28 Days Analytical Method: EPA 300.0 Rev 2.1 1993 Pace Analytical Services - Asheville Chloride 2.5 mg/L 1.0 0.60 1 08/20/21 03:58 16887-00-6 Fluoride ND mg/L 0.10 0.050 1 08/20/21 03:58 16984-48-8	2540C Total Dissolved Solids	•			e Corners, G	Α				
Pace Analytical Services - Asheville Chloride 2.5 mg/L 1.0 0.60 1 08/20/21 03:58 16887-00-6 Fluoride ND mg/L 0.10 0.050 1 08/20/21 03:58 16984-48-8	Total Dissolved Solids	157	mg/L	10.0	10.0	1		08/18/21 08:3	1	
Fluoride ND mg/L 0.10 0.050 1 08/20/21 03:58 16984-48-8	300.0 IC Anions 28 Days	-			2.1 1993					
Fluoride ND mg/L 0.10 0.050 1 08/20/21 03:58 16984-48-8	Chloride	2.5	ma/l	1.0	0.60	1		08/20/21 03:5	8 16887-00-6	
•			Ū							
Sulfate 1.3 mg/L 1.0 0.50 1 08/20/21 03:58 14808-79-8	Sulfate	1.3	mg/L	1.0	0.050	1				

Project: HAMMOND AP-4

Pace Project No.: 92555501

Date: 09/13/2021 09:36 AM

Sample: HGWA-112	Lab ID:	92555501004	Collecte	ed: 08/12/21	12:55	Received: 08/	13/21 14:55 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical Pace Ana	Method: lytical Services	- Charlotte						
Performed by	CUSTOME R				1		08/16/21 10:09		
рН	5.50	Std. Units			1		08/16/21 10:09		
6010D ATL ICP	•	Method: EPA 6 lytical Services	'			PA 3010A			
Calcium	6.9	mg/L	1.0	0.12	1	08/18/21 12:15	08/18/21 19:36	7440-70-2	
6020 MET ICPMS	•	Method: EPA 6 lytical Services				PA 3005A			
Antimony	ND	mg/L	0.0030	0.00078	1	08/18/21 12:41	08/19/21 18:48	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.0011	1	08/18/21 12:41	08/19/21 18:48	7440-38-2	
Barium	0.028	mg/L	0.0050	0.00067	1	08/18/21 12:41	08/19/21 18:48	7440-39-3	
Beryllium	ND	mg/L	0.00050	0.000054	1	08/18/21 12:41	08/19/21 18:48	7440-41-7	
Boron	ND	mg/L	0.040	0.0086	1	08/18/21 12:41	08/19/21 18:48	7440-42-8	
Cadmium	ND	mg/L	0.00050	0.00011	1	08/18/21 12:41	08/19/21 18:48	7440-43-9	
Chromium	0.0041J	mg/L	0.0050	0.0011	1	08/18/21 12:41	08/19/21 18:48	7440-47-3	
Cobalt	ND	mg/L	0.0050	0.00039	1	08/18/21 12:41	08/19/21 18:48	7440-48-4	
Lead	ND	mg/L	0.0010	0.00089	1	08/18/21 12:41	08/19/21 18:48	7439-92-1	
Lithium	ND	mg/L	0.030	0.00073	1	08/18/21 12:41	08/19/21 18:48	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.00074	1	08/18/21 12:41	08/19/21 18:48	7439-98-7	
Selenium	ND	mg/L	0.0050	0.0014	1	08/18/21 12:41	08/19/21 18:48	7782-49-2	
Thallium	ND	mg/L	0.0010	0.00018	1	08/18/21 12:41	08/19/21 18:48	7440-28-0	
7470 Mercury	•	Method: EPA 7 lytical Services				² A 7470A			
Mercury	0.00011J	mg/L	0.00020	0.000078	1	08/26/21 15:30	08/27/21 13:42	7439-97-6	В
2540C Total Dissolved Solids	-	Method: SM 25 lytical Services		e Corners, C	SA.				
Total Dissolved Solids	63.0	mg/L	10.0	10.0	1		08/18/21 08:31		
300.0 IC Anions 28 Days	-	Method: EPA 3 lytical Services		2.1 1993					
Chloride	4.4	mg/L	1.0	0.60	1		08/20/21 04:13	16887-00-6	
Fluoride	ND	mg/L	0.10	0.050	1		08/20/21 04:13		
Sulfate	ND	mg/L	1.0	0.50	1		08/20/21 04:13		

Project: HAMMOND AP-4

Pace Project No.: 92555501

Date: 09/13/2021 09:36 AM

Sample: HGWA-113	Lab ID:	92555501005	Collecte	ed: 08/12/21	15:08	Received: 08/	13/21 14:55 N	latrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Charlotte						
Performed by	CUSTOME R				1		08/16/21 10:10)	
рН	6.08	Std. Units			1		08/16/21 10:10)	
6010D ATL ICP	•	Method: EPA 6 lytical Services		'		PA 3010A			
Calcium	8.4	mg/L	1.0	0.12	1	08/18/21 12:15	08/18/21 19:41	7440-70-2	
6020 MET ICPMS	•	Method: EPA 6 lytical Services				PA 3005A			
Antimony	ND	mg/L	0.0030	0.00078	1	08/18/21 12:41	08/19/21 18:54	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.0011	1	08/18/21 12:41	08/19/21 18:54	7440-38-2	
Barium	0.033	mg/L	0.0050	0.00067	1	08/18/21 12:41	08/19/21 18:54	7440-39-3	
Beryllium	ND	mg/L	0.00050	0.000054	1	08/18/21 12:41	08/19/21 18:54		
Boron	ND	mg/L	0.040	0.0086	1	08/18/21 12:41	08/19/21 18:54	7440-42-8	
Cadmium	ND	mg/L	0.00050	0.00011	1	08/18/21 12:41			
Chromium	ND	mg/L	0.0050	0.0011	1	08/18/21 12:41			
Cobalt	ND	mg/L	0.0050	0.00039	1	08/18/21 12:41	08/19/21 18:54		
Lead	ND	mg/L	0.0010	0.00089	1	08/18/21 12:41	08/19/21 18:54		
Lithium	0.00094J	mg/L	0.030	0.00073	1	08/18/21 12:41			
Molybdenum	ND	mg/L	0.010	0.00074	1	08/18/21 12:41	08/19/21 18:54		
Selenium	0.0023J	mg/L	0.0050	0.0014	1	08/18/21 12:41	08/19/21 18:54		
Thallium	ND	mg/L	0.0010	0.00018	1	08/18/21 12:41			
7470 Mercury	Analytical	Method: EPA 7	7470A Prep	paration Met	nod: EF	PA 7470A			
	Pace Ana	lytical Services	- Peachtre	e Corners, G	iΑ				
Mercury	ND	mg/L	0.00020	0.000078	1	08/26/21 15:30	08/27/21 13:44	7439-97-6	
2540C Total Dissolved Solids	•	Method: SM 25							
	Pace Ana	lytical Services	- Peachtre	e Corners, G	iΑ				
Total Dissolved Solids	92.0	mg/L	10.0	10.0	1		08/18/21 08:31		
300.0 IC Anions 28 Days		Method: EPA 3							
	Pace Ana	lytical Services	- Asheville						
Chloride	1.5	mg/L	1.0	0.60	1		08/20/21 04:28	16887-00-6	
Fluoride	0.16	mg/L	0.10	0.050	1		08/20/21 04:28		
Sulfate	10.0	mg/L	1.0	0.50	1		08/20/21 04:28		

Project: HAMMOND AP-4

Pace Project No.: 92555501

Date: 09/13/2021 09:36 AM

Sample: HGWC-117A	Lab ID:	92555501006	Collecte	ed: 08/12/2	1 17:57	Received: 08/	13/21 14:55 Ma	atrix: Water	
_			Report						_
Parameters Parameters	Results -	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Charlotte	;					
Performed by	CUSTOME R				1		08/16/21 10:10		
рН	6.27	Std. Units			1		08/16/21 10:10		
6010D ATL ICP	Analytical	Method: EPA 6	010D Pre	paration Me	thod: El	PA 3010A			
	Pace Ana	lytical Services	- Peachtre	e Corners, (GΑ				
Calcium	50.7	mg/L	1.0	0.12	1	08/18/21 12:15	08/18/21 19:46	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Pre	paration Me	thod: Ef	PA 3005A			
- -	•	lytical Services							
Antimony	ND	mg/L	0.0030	0.00078	1	08/18/21 12:41	08/20/21 15:22	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.0011	1	08/18/21 12:41	08/20/21 15:22	7440-38-2	
Barium	0.079	mg/L	0.0050	0.00067	1	08/18/21 12:41	08/20/21 15:22	7440-39-3	
Beryllium	ND	mg/L	0.00050	0.000054	1	08/18/21 12:41			
Boron	0.34	mg/L	0.040	0.0086	1	08/18/21 12:41			
Cadmium	0.00016J	mg/L	0.00050	0.00011	1	08/18/21 12:41			
Chromium	ND	mg/L	0.0050	0.0011	1	08/18/21 12:41			
Cobalt	0.0024J	mg/L	0.0050	0.00039	1	08/18/21 12:41			
Lead	ND	mg/L	0.0010	0.00089	1	08/18/21 12:41			
Lithium	0.0036J	mg/L	0.030	0.00073	1	08/18/21 12:41			
Molybdenum	ND	mg/L	0.010	0.00074	1	08/18/21 12:41			
Selenium	ND	mg/L	0.0050	0.0014	1	08/18/21 12:41			
Thallium	ND ND	mg/L	0.0030	0.00014	1		08/20/21 15:22		
7470 Mercury		Method: EPA 7			thod: EE				
7470 Mercury		llytical Services				77707			
Mercury	0.000094J	mg/L	0.00020	0.000078	1	08/26/21 15:30	08/27/21 13:53	7439-97-6	В
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2011						
	Pace Ana	lytical Services	- Peachtre	e Corners, 0	GΑ				
Total Dissolved Solids	256	mg/L	10.0	10.0	1		08/18/21 08:31		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	300.0 Rev 2	2.1 1993					
	Pace Ana	lytical Services	- Asheville						
Chloride	6.3	mg/L	1.0	0.60	1		08/20/21 05:13	16887-00-6	
Fluoride	ND	mg/L	0.10	0.050	1		08/20/21 05:13		
Sulfate	64.6	mg/L	1.0	0.50	1		08/20/21 05:13		

Project: HAMMOND AP-4

Pace Project No.: 92555501

Date: 09/13/2021 09:36 AM

Sample: HGWC-102	Lab ID:	92555501007	Collecte	ed: 08/13/21	17:16	Received: 08/	/16/21 13:25 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Charlotte						
Performed by	CUSTOME R				1		08/16/21 17:34		
рН	5.45	Std. Units			1		08/16/21 17:34		
6010D ATL ICP	•	Method: EPA 6 lytical Services				PA 3010A			
Calcium	119	mg/L	1.0	0.12	1	08/18/21 12:15	08/18/21 19:50	7440-70-2	
6020 MET ICPMS	•	Method: EPA 6 lytical Services				PA 3005A			
Antimony	ND	mg/L	0.0030	0.00078	1	08/18/21 12:41	08/20/21 15:28	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.0011	1	08/18/21 12:41	08/20/21 15:28	7440-38-2	
Barium	0.026	mg/L	0.0050	0.00067	1	08/18/21 12:41	08/20/21 15:28	7440-39-3	
Beryllium	ND	mg/L	0.00050	0.000054	1	08/18/21 12:41	08/20/21 15:28	7440-41-7	
Boron	2.4	mg/L	0.040	0.0086	1	08/18/21 12:41	08/20/21 15:28	7440-42-8	
Cadmium	0.00069	mg/L	0.00050	0.00011	1	08/18/21 12:41	08/20/21 15:28	7440-43-9	
Chromium	ND	mg/L	0.0050	0.0011	1	08/18/21 12:41	08/20/21 15:28	7440-47-3	
Cobalt	0.00085J	mg/L	0.0050	0.00039	1	08/18/21 12:41	08/20/21 15:28	7440-48-4	
Lead	ND	mg/L	0.0010	0.00089	1	08/18/21 12:41		7439-92-1	
Lithium	0.0011J	mg/L	0.030	0.00073	1	08/18/21 12:41			
Molybdenum	ND	mg/L	0.010	0.00074	1	08/18/21 12:41			
Selenium	ND	mg/L	0.0050	0.0014	1	08/18/21 12:41			
Thallium	ND	mg/L	0.0010	0.00018	1	08/18/21 12:41			
7470 Mercury	Analytical	Method: EPA 7	7470A Prep	paration Meth	nod: EF	PA 7470A			
·	-	lytical Services							
Mercury	0.00010J	mg/L	0.00020	0.000078	1	08/26/21 15:30	08/27/21 13:55	7439-97-6	В
2540C Total Dissolved Solids	•	Method: SM 2		e Corners, G	βA				
Total Dissolved Solids	647	mg/L	10.0	10.0	1		08/19/21 15:09		
300.0 IC Anions 28 Days	•	Method: EPA 3		2.1 1993					
Chloride	6.0	mg/L	1.0	0.60	1		08/20/21 13:28	16887-00-6	
Fluoride	ND	mg/L	0.10	0.050	1		08/20/21 13:28		
Sulfate	248	mg/L	6.0	3.0	6		08/20/21 14:30		
Juliato	240	ilig/L	0.0	5.0	U		00/20/21 14.30	1-1000-13-0	

Project: HAMMOND AP-4

Pace Project No.: 92555501

Date: 09/13/2021 09:36 AM

Sample: HGWC-105	Lab ID:	92555501008	Collecte	ed: 08/13/21	15:35	Received: 08/	/16/21 13:25 N	latrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Charlotte						
Performed by	CUSTOME R				1		08/16/21 17:34		
рН	6.44	Std. Units			1		08/16/21 17:34		
6010D ATL ICP	•	Method: EPA 6 lytical Services		'		PA 3010A			
Calcium	102	mg/L	1.0	0.12	1	08/18/21 12:15	08/18/21 19:55	7440-70-2	
6020 MET ICPMS	•	Method: EPA 6 lytical Services				PA 3005A			
Antimony	ND	mg/L	0.0030	0.00078	1	08/18/21 12:41	08/20/21 15:33	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.0011	1	08/18/21 12:41	08/20/21 15:33		
Barium	0.073	mg/L	0.0050	0.00067	1	08/18/21 12:41	08/20/21 15:33	7440-39-3	
Beryllium	ND	mg/L	0.00050	0.000054	1	08/18/21 12:41	08/20/21 15:33		
Boron	1.2	mg/L	0.040	0.0086	1	08/18/21 12:41			
Cadmium	ND	mg/L	0.00050	0.00011	1	08/18/21 12:41			
Chromium	ND	mg/L	0.0050	0.0011	1	08/18/21 12:41			
Cobalt	ND	mg/L	0.0050	0.00039	1	08/18/21 12:41	08/20/21 15:33		
Lead	ND	mg/L	0.0010	0.00089	1	08/18/21 12:41	08/20/21 15:33		
Lithium	0.0038J	mg/L	0.030	0.00073	1	08/18/21 12:41			
Molybdenum	ND	mg/L	0.010	0.00074	1	08/18/21 12:41	08/20/21 15:33		
Selenium	ND	mg/L	0.0050	0.0014	1	08/18/21 12:41	08/20/21 15:33		
Thallium	ND	mg/L	0.0010	0.00018	1	08/18/21 12:41			
7470 Mercury	Analytical	Method: EPA 7	470A Prer	paration Meth	nod: EF	PA 7470A			
•	-	lytical Services							
Mercury	0.00022	mg/L	0.00020	0.000078	1	08/26/21 15:30	08/27/21 13:58	7439-97-6	В
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2011						
	Pace Ana	lytical Services	- Peachtre	e Corners, G	iΑ				
Total Dissolved Solids	441	mg/L	10.0	10.0	1		08/19/21 15:10)	
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	300.0 Rev 2	2.1 1993					
	Pace Ana	lytical Services	- Asheville						
Chloride	3.7	mg/L	1.0	0.60	1		08/20/21 14:15	16887-00-6	
Fluoride	ND	mg/L	0.10	0.050	1		08/20/21 14:15		
Sulfate	142	mg/L	3.0	1.5	3		08/20/21 14:45		

Project: HAMMOND AP-4

Pace Project No.: 92555501

Date: 09/13/2021 09:36 AM

Sample: HGWC-107	Lab ID:	92555501009	Collecte	ed: 08/13/21	14:10	Received: 08/	/16/21 13:25 M	latrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Charlotte						
Performed by	CUSTOME R				1		08/16/21 17:34		
Н	6.11	Std. Units			1		08/16/21 17:34		
6010D ATL ICP	•	Method: EPA 6 lytical Services	'			PA 3010A			
Calcium	57.8	mg/L	1.0	0.12	1	08/18/21 12:15	08/18/21 20:00	7440-70-2	
6020 MET ICPMS	•	Method: EPA 6 lytical Services				PA 3005A			
Antimony	ND	mg/L	0.0030	0.00078	1	08/18/21 12:41	08/20/21 15:39	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.0011	1	08/18/21 12:41	08/20/21 15:39	7440-38-2	
Barium	0.033	mg/L	0.0050	0.00067	1	08/18/21 12:41	08/20/21 15:39	7440-39-3	
Beryllium	ND	mg/L	0.00050	0.000054	1	08/18/21 12:41	08/20/21 15:39	7440-41-7	
Boron	0.73	mg/L	0.040	0.0086	1	08/18/21 12:41	08/20/21 15:39	7440-42-8	
Cadmium	ND	mg/L	0.00050	0.00011	1	08/18/21 12:41	08/20/21 15:39	7440-43-9	
Chromium	ND	mg/L	0.0050	0.0011	1	08/18/21 12:41	08/20/21 15:39	7440-47-3	
Cobalt	ND	mg/L	0.0050	0.00039	1	08/18/21 12:41	08/20/21 15:39	7440-48-4	
₋ead	ND	mg/L	0.0010	0.00089	1	08/18/21 12:41	08/20/21 15:39	7439-92-1	
_ithium	0.00084J	mg/L	0.030	0.00073	1	08/18/21 12:41	08/20/21 15:39	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.00074	1	08/18/21 12:41	08/20/21 15:39		
Selenium	ND	mg/L	0.0050	0.0014	1	08/18/21 12:41	08/20/21 15:39	7782-49-2	
Γhallium	ND	mg/L	0.0010	0.00018	1	08/18/21 12:41			
7470 Mercury	Analytical	Method: EPA 7	'470A Prej	paration Met	hod: EF	PA 7470A			
	Pace Ana	lytical Services	- Peachtre	e Corners, G	βA				
Mercury	0.000084J	mg/L	0.00020	0.000078	1	08/26/21 15:30	08/27/21 14:01	7439-97-6	В
2540C Total Dissolved Solids	•	Method: SM 25		e Corners (SΔ				
Total Dissolved Solids	291	mg/L	10.0	10.0	1		08/19/21 15:10	1	
	-	G							
300.0 IC Anions 28 Days	•	Method: EPA 3 lytical Services							
Chloride	3.1	mg/L	1.0	0.60	1		08/20/21 19:31	16887-00-6	
Fluoride	ND	mg/L	0.10	0.050	1		08/20/21 19:31		
Sulfate	112	mg/L	2.0	1.0	2		08/21/21 01:35		

Project: HAMMOND AP-4

Pace Project No.: 92555501

Date: 09/13/2021 09:36 AM

Sample: HGWC-109	Lab ID:	92555501010	Collecte	ed: 08/13/2	1 12:00	Received: 08/	/16/21 13:25 M	atrix: Water	
_			Report						
Parameters	Results	Units	Limit	MDL_	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Charlotte)					
Performed by	CUSTOME R				1		08/16/21 17:34		
рН	6.71	Std. Units			1		08/16/21 17:34		
6010D ATL ICP	Analytical	Method: EPA	6010D Pre	paration Met	hod: EF	PA 3010A			
	Pace Ana	lytical Services	- Peachtre	e Corners, C	SA.				
Calcium	43.5	mg/L	1.0	0.12	1	08/18/21 12:15	08/18/21 20:04	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA	6020B Pre	paration Met	hod: EF	PA 3005A			
	•	lytical Services		•					
Antimony	ND	mg/L	0.0030	0.00078	1	08/18/21 12:41	08/20/21 15:45	7440-36-0	
Arsenic	0.0019J	mg/L	0.0050	0.00078	1	08/18/21 12:41	08/20/21 15:45		
Barium	0.080	mg/L	0.0050	0.0011	1	08/18/21 12:41	08/20/21 15:45		
	0.080 ND	J	0.0050	0.00007	1	08/18/21 12:41	08/20/21 15:45		
Beryllium		mg/L							
Boron	0.24	mg/L	0.040	0.0086	1	08/18/21 12:41			
Cadmium	ND	mg/L	0.00050	0.00011	1	08/18/21 12:41			
Chromium	ND	mg/L	0.0050	0.0011	1	08/18/21 12:41	08/20/21 15:45		
Cobalt	0.0011J	mg/L	0.0050	0.00039	1	08/18/21 12:41			
Lead	ND	mg/L	0.0010	0.00089	1	08/18/21 12:41	08/20/21 15:45		
Lithium	ND	mg/L	0.030	0.00073	1	08/18/21 12:41	08/20/21 15:45		
Molybdenum	ND	mg/L	0.010	0.00074	1	08/18/21 12:41	08/20/21 15:45	7439-98-7	
Selenium	ND	mg/L	0.0050	0.0014	1	08/18/21 12:41	08/20/21 15:45	7782-49-2	
Γhallium	ND	mg/L	0.0010	0.00018	1	08/18/21 12:41	08/20/21 15:45	7440-28-0	
7470 Mercury	Analytical	Method: EPA	7470A Prej	paration Met	hod: EF	A 7470A			
•	Pace Ana	lytical Services	- Peachtre	e Corners, C	βA				
Mercury	0.000080J	mg/L	0.00020	0.000078	1	08/26/21 15:30	08/27/21 14:04	7439-97-6	В
2540C Total Dissolved Solids	Analytical	Method: SM 2	540C-2011						
	Pace Ana	lytical Services	- Peachtre	e Corners, C	SA.				
Total Dissolved Solids	189	mg/L	10.0	10.0	1		08/19/21 15:10		
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0 Rev 2	2.1 1993					
	•	lytical Services							
Chloride	4.0	mg/L	1.0	0.60	1		08/20/21 19:46	16887_00_6	
Chloride Fluoride	4.0 0.086J	mg/L	0.10	0.050	1		08/20/21 19:46		
		J							
Sulfate	24.4	mg/L	1.0	0.50	1		08/20/21 19:46	14808-79-8	

Project: HAMMOND AP-4

Pace Project No.: 92555501

Date: 09/13/2021 09:36 AM

Sample: HGWC-118	Lab ID:	92555501011	Collecte	ed: 08/13/21	14:18	Received: 08/	16/21 13:25 Ma	atrix: Water	
			Report					0.0.1	
Parameters	Results	Units	Limit	MDL .	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Charlotte						
Performed by	CUSTOME R				1		08/16/21 17:35		
рН	6.78	Std. Units			1		08/16/21 17:35		
6010D ATL ICP	•	Method: EPA (PA 3010A			
Calcium	84.3	mg/L	1.0	0.12	1	08/18/21 12:15	08/18/21 20:09	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA	6020B Prei	paration Met	hod: EF	PA 3005A			
	•	lytical Services							
Antimony	ND	mg/L	0.0030	0.00078	1	08/18/21 12:41	08/20/21 15:51	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.0011	1	08/18/21 12:41	08/20/21 15:51	7440-38-2	
Barium	0.043	mg/L	0.0050	0.00067	1	08/18/21 12:41	08/20/21 15:51	7440-39-3	
Beryllium	ND	mg/L	0.00050	0.000054	1	08/18/21 12:41	08/20/21 15:51	7440-41-7	
Boron	0.59	mg/L	0.040	0.0086	1	08/18/21 12:41	08/20/21 15:51	7440-42-8	
Cadmium	ND	mg/L	0.00050	0.00011	1	08/18/21 12:41	08/20/21 15:51	7440-43-9	
Chromium	ND	mg/L	0.0050	0.0011	1	08/18/21 12:41			
Cobalt	ND	mg/L	0.0050	0.00039	1	08/18/21 12:41	08/20/21 15:51	7440-48-4	
Lead	ND	mg/L	0.0010	0.00089	1	08/18/21 12:41	08/20/21 15:51		
Lithium	0.0017J	mg/L	0.030	0.00073	1	08/18/21 12:41			
Molybdenum	ND	mg/L	0.010	0.00074	1	08/18/21 12:41			
Selenium	ND	mg/L	0.0050	0.00074	1	08/18/21 12:41			
Thallium	ND ND	mg/L	0.0030	0.0014	1		08/20/21 15:51		
		· ·					00/20/21 15.51	7440-20-0	
7470 Mercury	•	Method: EPA				PA 7470A			
	Pace Ana	lytical Services	- Peachtre	e Corners, G	βA				
Mercury	0.000081J	mg/L	0.00020	0.000078	1	08/26/21 15:30	08/27/21 14:07	7439-97-6	В
2540C Total Dissolved Solids	Analytical	Method: SM 2	540C-2011						
	Pace Ana	lytical Services	- Peachtre	e Corners, G	βA				
Total Dissolved Solids	336	mg/L	10.0	10.0	1		08/19/21 15:10		
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0 Rev 2	2.1 1993					
•	•	lytical Services							
Chloride	4.0	mg/L	1.0	0.60	1		08/20/21 20:01	16887-00-6	
Fluoride	0.075J	mg/L	0.10	0.050	1		08/20/21 20:01		
Sulfate	75.1	mg/L	1.0	0.50	1		08/20/21 20:01		

Project: HAMMOND AP-4

Pace Project No.: 92555501

Date: 09/13/2021 09:36 AM

Sample: DUP-4	Lab ID:	92555501012	Collecte	ed: 08/13/2	00:00	Received: 08/	16/21 13:25 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6010D ATL ICP	Analytical N	Method: EPA 6	010D Pre	paration Met	hod: EF	PA 3010A			
	Pace Analy	tical Services	- Peachtre	e Corners, C	€A				
Calcium	44.7	mg/L	1.0	0.12	1	08/18/21 12:15	08/18/21 20:14	7440-70-2	
6020 MET ICPMS	Analytical M	Method: EPA 6	020B Pre	paration Met	hod: EF	A 3005A			
	Pace Analy	tical Services	- Peachtre	e Corners, C	€A				
Antimony	ND	mg/L	0.0030	0.00078	1	08/18/21 12:41	08/20/21 15:56	7440-36-0	
Arsenic	0.0021J	mg/L	0.0050	0.0011	1	08/18/21 12:41	08/20/21 15:56		
Barium	0.084	mg/L	0.0050	0.00067	1	08/18/21 12:41	08/20/21 15:56	7440-39-3	
Beryllium	ND	mg/L	0.00050	0.000054	1	08/18/21 12:41	08/20/21 15:56	7440-41-7	
Boron	0.24	mg/L	0.040	0.0086	1	08/18/21 12:41	08/20/21 15:56	7440-42-8	
Cadmium	ND	mg/L	0.00050	0.00011	1	08/18/21 12:41	08/20/21 15:56	7440-43-9	
Chromium	ND	mg/L	0.0050	0.0011	1	08/18/21 12:41	08/20/21 15:56	7440-47-3	
Cobalt	0.0012J	mg/L	0.0050	0.00039	1	08/18/21 12:41	08/20/21 15:56	7440-48-4	
₋ead	ND	mg/L	0.0010	0.00089	1	08/18/21 12:41	08/20/21 15:56	7439-92-1	
Lithium	0.00077J	mg/L	0.030	0.00073	1	08/18/21 12:41	08/20/21 15:56	7439-93-2	
Nolybdenum	ND	mg/L	0.010	0.00074	1	08/18/21 12:41	08/20/21 15:56	7439-98-7	
Selenium	ND	mg/L	0.0050	0.0014	1	08/18/21 12:41	08/20/21 15:56	7782-49-2	
- Thallium	ND	mg/L	0.0010	0.00018	1	08/18/21 12:41	08/20/21 15:56	7440-28-0	
7470 Mercury	Analytical N	Method: EPA 7	470A Prej	paration Met	hod: EP	A 7470A			
	Pace Analy	tical Services	- Peachtre	e Corners, C	€A				
Mercury	ND	mg/L	0.00020	0.000078	1	08/26/21 15:30	08/27/21 14:09	7439-97-6	
2540C Total Dissolved Solids	Analytical N	Method: SM 25	540C-2011						
	Pace Analy	tical Services	- Peachtre	e Corners, C	SA.				
Total Dissolved Solids	196	mg/L	10.0	10.0	1		08/19/21 15:10		
300.0 IC Anions 28 Days	Analytical N	Method: EPA 3	00.0 Rev 2	2.1 1993					
	Pace Analy	tical Services	- Asheville						
Chloride	4.0	mg/L	1.0	0.60	1		08/20/21 20:46	16887-00-6	
Fluoride	0.087J	mg/L	0.10	0.050	1		08/20/21 20:46	16984-48-8	
Sulfate	24.3	mg/L	1.0	0.50	1		08/20/21 20:46	14808-79-8	

Project: HAMMOND AP-4

Pace Project No.: 92555501

Date: 09/13/2021 09:36 AM

Sample: HGWC-101	Lab ID:	92555501013	Collecte	ed: 08/16/21	12:50	Received: 08/	/17/21 11:25 M	atrix: Water	_
			Report					0.0.1	
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Charlotte						
Performed by	CUSTOME R				1		08/17/21 16:27		
рН	5.40	Std. Units			1		08/17/21 16:27		
6010D ATL ICP	•	Method: EPA 6				PA 3010A			
Calcium	22.8	mg/L	1.0	0.12	1	08/18/21 12:15	08/18/21 20:19	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA 6	6020B Pre	paration Met	hod: EF	PA 3005A			
	Pace Ana	lytical Services	- Peachtre	e Corners, C	βA				
Antimony	ND	mg/L	0.0030	0.00078	1	08/18/21 12:41	08/20/21 16:02	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.0011	1	08/18/21 12:41	08/20/21 16:02	7440-38-2	
Barium	0.037	mg/L	0.0050	0.00067	1	08/18/21 12:41	08/20/21 16:02	7440-39-3	
Beryllium	ND	mg/L	0.00050	0.000054	1	08/18/21 12:41	08/20/21 16:02	7440-41-7	
Boron	0.13	mg/L	0.040	0.0086	1	08/18/21 12:41	08/20/21 16:02	7440-42-8	
Cadmium	0.00015J	mg/L	0.00050	0.00011	1	08/18/21 12:41	08/20/21 16:02	7440-43-9	
Chromium	ND	mg/L	0.0050	0.0011	1	08/18/21 12:41	08/20/21 16:02	7440-47-3	
Cobalt	0.0026J	mg/L	0.0050	0.00039	1	08/18/21 12:41	08/20/21 16:02	7440-48-4	
Lead	ND	mg/L	0.0010	0.00089	1	08/18/21 12:41	08/20/21 16:02	7439-92-1	
Lithium	ND	mg/L	0.030	0.00073	1	08/18/21 12:41	08/20/21 16:02	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.00074	1	08/18/21 12:41			
Selenium	ND	mg/L	0.0050	0.0014	1	08/18/21 12:41	08/20/21 16:02	7782-49-2	
Thallium	ND	mg/L	0.0010	0.00018	1		08/20/21 16:02		
7470 Mercury	Analytical	Method: EPA 7	7470A Prej	paration Met	hod: EF	PA 7470A			
	Pace Ana	lytical Services	- Peachtre	e Corners, G	SA.				
Mercury	0.000099J	mg/L	0.00020	0.000078	1	08/26/21 15:30	08/27/21 14:12	7439-97-6	В
2540C Total Dissolved Solids	•	Method: SM 2		e Corners, G	SA.				
Total Dissolved Solids	206	mg/L	10.0	10.0	1		08/19/21 15:11		
300.0 IC Anions 28 Days	•	Method: EPA 3		2.1 1993					
Chloride	5.4	mg/L	1.0	0.60	1		08/24/21 20:58	16887-00-6	
Fluoride	5.4 ND	mg/L	0.10	0.60	1		08/24/21 20:58		
Sulfate	72.1	•	2.0	1.0	2		08/25/21 09:20		
Sullate	12.1	mg/L	2.0	1.0	2		00/25/21 09:20	14000-79-8	

Project: HAMMOND AP-4

Pace Project No.: 92555501

Date: 09/13/2021 09:36 AM

Sample: HGWC-103	Lab ID:	92555501014	Collecte	ed: 08/16/21	10:50	Received: 08/	17/21 11:25 Ma	atrix: Water	
D	Danilla	11-26-	Report	MDI	DE	Danasasal	A b l	040 N	0
Parameters	Results -	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Charlotte						
Performed by	CUSTOME R				1		08/17/21 16:28		
рН	5.59	Std. Units			1		08/17/21 16:28		
6010D ATL ICP	•	Method: EPA				PA 3010A			
Calcium	124	mg/L	1.0	0.12	1	08/18/21 12:15	08/18/21 20:33	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA	6020B Prei	paration Met	hod: EF	PA 3005A			
	•	lytical Services							
Antimony	ND	mg/L	0.0030	0.00078	1	08/18/21 12:41	08/20/21 16:08	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.0011	1	08/18/21 12:41	08/20/21 16:08	7440-38-2	
Barium	0.037	mg/L	0.0050	0.00067	1	08/18/21 12:41	08/20/21 16:08	7440-39-3	
Beryllium	ND	mg/L	0.00050	0.000054	1	08/18/21 12:41	08/20/21 16:08	7440-41-7	
Boron	3.2	mg/L	0.040	0.0086	1	08/18/21 12:41	08/20/21 16:08	7440-42-8	
Cadmium	0.00081	mg/L	0.00050	0.00011	1	08/18/21 12:41	08/20/21 16:08	7440-43-9	
Chromium	ND	mg/L	0.0050	0.0011	1	08/18/21 12:41			
Cobalt	0.0022J	mg/L	0.0050	0.00039	1	08/18/21 12:41	08/20/21 16:08	7440-48-4	
_ead	ND	mg/L	0.0010	0.00089	1	08/18/21 12:41	08/20/21 16:08	7439-92-1	
Lithium	0.0016J	mg/L	0.030	0.00073	1	08/18/21 12:41			
Molybdenum	ND	mg/L	0.010	0.00074	1	08/18/21 12:41			
Selenium	ND	mg/L	0.0050	0.0014	1	08/18/21 12:41			
Thallium	ND	mg/L	0.0010	0.00018	1		08/20/21 16:08		
7470 Mercury	Analytical	Method: EPA	7470A Prep	paration Met	hod: EF	PA 7470A			
	Pace Ana	lytical Services	- Peachtre	e Corners, C	βA				
Mercury	0.00027	mg/L	0.00020	0.000078	1	08/26/21 15:30	08/27/21 14:15	7439-97-6	В
2540C Total Dissolved Solids	Analytical	Method: SM 2	540C-2011						
	Pace Ana	lytical Services	- Peachtre	e Corners, C	βA				
Total Dissolved Solids	672	mg/L	20.0	20.0	1		08/19/21 15:11		
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0 Rev 2	2.1 1993					
-	Pace Ana	lytical Services	- Asheville						
Chloride	10.4	mg/L	1.0	0.60	1		08/22/21 23:02	16887-00-6	
Fluoride	ND	mg/L	0.10	0.050	1		08/22/21 23:02		
Sulfate	354	mg/L	8.0	4.0	8		08/23/21 12:30		

Date: 09/13/2021 09:36 AM

ANALYTICAL RESULTS

Project: HAMMOND AP-4

Pace Project No.: 92555501

Sample: FR-4

Lab ID: 92555501015 Collected: 08/16/21 11:30 Received: 08/17/21 11:25 Matrix: Water

Sample: FB-4	Lab ID:	92555501015	Collecte	ed: 08/16/21	11:30	Received: 08/	/17/21 11:25 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6010D ATL ICP	Analytical	Method: EPA	6010D Pre	paration Met	hod: E	PA 3010A			
	Pace Analy	ytical Services	- Peachtre	e Corners, G	βA				
Calcium	ND	mg/L	1.0	0.12	1	08/18/21 12:15	08/18/21 20:43	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA	6020B Pre	paration Met	hod: El	PA 3005A			
	Pace Analy	ytical Services	- Peachtre	e Corners, G	βA				
Antimony	ND	mg/L	0.0030	0.00078	1	08/18/21 12:41	08/19/21 20:11	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.0011	1	08/18/21 12:41	08/19/21 20:11	7440-38-2	
Barium	ND	mg/L	0.0050	0.00067	1	08/18/21 12:41	08/19/21 20:11	7440-39-3	
Beryllium	ND	mg/L	0.00050	0.000054	1	08/18/21 12:41	08/19/21 20:11	7440-41-7	
Boron	ND	mg/L	0.040	0.0086	1	08/18/21 12:41	08/19/21 20:11	7440-42-8	
Cadmium	ND	mg/L	0.00050	0.00011	1	08/18/21 12:41	08/19/21 20:11	7440-43-9	
Chromium	ND	mg/L	0.0050	0.0011	1	08/18/21 12:41	08/19/21 20:11	7440-47-3	
Cobalt	ND	mg/L	0.0050	0.00039	1	08/18/21 12:41	08/19/21 20:11	7440-48-4	
.ead	ND	mg/L	0.0010	0.00089	1	08/18/21 12:41	08/19/21 20:11	7439-92-1	
ithium	ND	mg/L	0.030	0.00073	1	08/18/21 12:41	08/19/21 20:11	7439-93-2	
Nolybdenum	ND	mg/L	0.010	0.00074	1	08/18/21 12:41	08/19/21 20:11	7439-98-7	
Selenium	ND	mg/L	0.0050	0.0014	1	08/18/21 12:41	08/19/21 20:11	7782-49-2	
hallium	ND	mg/L	0.0010	0.00018	1	08/18/21 12:41	08/19/21 20:11	7440-28-0	
470 Mercury	Analytical	Method: EPA	7470A Pre	paration Meth	nod: El	PA 7470A			
	Pace Analy	ytical Services	- Peachtre	e Corners, G	SA.				
Mercury	0.00012J	mg/L	0.00020	0.000078	1	08/26/21 15:30	08/27/21 14:18	7439-97-6	В
2540C Total Dissolved Solids	Analytical	Method: SM 2	540C-2011						
	Pace Analy	ytical Services	- Peachtre	e Corners, G	SA.				
Total Dissolved Solids	ND	mg/L	10.0	10.0	1		08/19/21 15:12		
800.0 IC Anions 28 Days	Analytical	Method: EPA	300.0 Rev 2	2.1 1993					
	Pace Analy	ytical Services	- Asheville						
Chloride	ND	mg/L	1.0	0.60	1		08/22/21 23:47	16887-00-6	
Fluoride	ND	mg/L	0.10	0.050	1		08/22/21 23:47	16984-48-8	
Sulfate	ND	mg/L	1.0	0.50	1		08/22/21 23:47		

Project: HAMMOND AP-4

Pace Project No.: 92555501

Date: 09/13/2021 09:36 AM

Sample: EB-4	Lab ID:	92555501016	Collecte	ed: 08/16/2	1 11:30	Received: 08/	17/21 11:25 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
						· — ·	•		
6010D ATL ICP	•	Method: EPA 6		•		PA 3010A			
	Pace Anal	ytical Services	- Peachtre	e Corners, 0	βA				
Calcium	ND	mg/L	1.0	0.12	1	08/18/21 12:15	08/18/21 20:48	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA 6	6020B Pre	paration Met	hod: EF	PA 3005A			
	Pace Anal	ytical Services	- Peachtre	e Corners, 0	βA				
Antimony	ND	mg/L	0.0030	0.00078	1	08/18/21 12:41	08/19/21 20:17	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.0011	1	08/18/21 12:41	08/19/21 20:17	7440-38-2	
Barium	ND	mg/L	0.0050	0.00067	1	08/18/21 12:41	08/19/21 20:17	7440-39-3	
Beryllium	ND	mg/L	0.00050	0.000054	1	08/18/21 12:41	08/19/21 20:17	7440-41-7	
Boron	ND	mg/L	0.040	0.0086	1	08/18/21 12:41	08/19/21 20:17	7440-42-8	
Cadmium	ND	mg/L	0.00050	0.00011	1	08/18/21 12:41	08/19/21 20:17	7440-43-9	
Chromium	ND	mg/L	0.0050	0.0011	1	08/18/21 12:41	08/19/21 20:17	7440-47-3	
Cobalt	ND	mg/L	0.0050	0.00039	1	08/18/21 12:41	08/19/21 20:17	7440-48-4	
Lead	ND	mg/L	0.0010	0.00089	1	08/18/21 12:41	08/19/21 20:17	7439-92-1	
Lithium	ND	mg/L	0.030	0.00073	1	08/18/21 12:41	08/19/21 20:17	7439-93-2	
Molybdenum	ND	mg/L	0.010	0.00074	1	08/18/21 12:41	08/19/21 20:17	7439-98-7	
Selenium	ND	mg/L	0.0050	0.0014	1	08/18/21 12:41	08/19/21 20:17	7782-49-2	
Thallium	ND	mg/L	0.0010	0.00018	1	08/18/21 12:41	08/19/21 20:17	7440-28-0	
7470 Mercury	Analytical	Method: EPA 7	7470A Pre	paration Met	hod: EF	PA 7470A			
	Pace Anal	ytical Services	- Peachtre	e Corners, 0	βA				
Mercury	0.00012J	mg/L	0.00020	0.000078	1	08/26/21 15:30	08/27/21 14:26	7439-97-6	В
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2011						
	Pace Anal	ytical Services	- Peachtre	e Corners, 0	βA				
Total Dissolved Solids	ND	mg/L	10.0	10.0	1		08/19/21 15:12		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	300.0 Rev 2	2.1 1993					
•	Pace Anal	ytical Services	- Asheville						
Chloride	ND	mg/L	1.0	0.60	1		08/23/21 00:02	16887-00-6	
Fluoride	ND	mg/L	0.10	0.050	1		08/23/21 00:02	16984-48-8	
Sulfate	ND	mg/L	1.0	0.50	1		08/23/21 00:02	14808-79-8	

Project: HAMMOND AP-4

Pace Project No.: 92555501

Date: 09/13/2021 09:36 AM

Sample: HGWC-117	Lab ID:	92555501017	Collecte	ed: 08/19/21	18:28	Received: 08/	20/21 12:15 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Charlotte						
Performed by	CUSTOME R				1		08/20/21 15:24		
рН	6.04	Std. Units			1		08/20/21 15:24		
6010D ATL ICP	•	Method: EPA 6 lytical Services				PA 3010A			
Calcium	40.9	mg/L	1.0	0.12	1	08/24/21 12:42	08/24/21 19:27	7440-70-2	
6020 MET ICPMS	•	Method: EPA 6 lytical Services				PA 3005A			
Antimony	ND	mg/L	0.0030	0.00078	1	08/24/21 12:10	08/27/21 13:08	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.0011	1	08/24/21 12:10	08/27/21 13:08	7440-38-2	
Barium	0.041	mg/L	0.0050	0.00067	1	08/24/21 12:10	08/27/21 13:08	7440-39-3	
Beryllium	0.000056J	mg/L	0.00050	0.000054	1		08/27/21 13:08		
Boron	0.78	mg/L	0.040	0.0086	1		08/27/21 13:08		
Cadmium	0.0012	mg/L	0.00050	0.00011	1		08/27/21 13:08		
Chromium	ND	mg/L	0.0050	0.0011	1		08/27/21 13:08		
Cobalt	0.017	mg/L	0.0050	0.00039	1		08/27/21 13:08		
Lead	ND	mg/L	0.0010	0.00089	1		08/27/21 13:08		
Lithium	0.0017J	mg/L	0.030	0.00073	1		08/27/21 13:08		
Molybdenum	ND	mg/L	0.010	0.00074	1		08/27/21 13:08		
Selenium	ND	mg/L	0.0050	0.0014	1		08/27/21 13:08		
Thallium	ND	mg/L	0.0010	0.00018	1		08/27/21 13:08		
7470 Mercury	Analytical	Method: EPA 7	7470A Pres	paration Met	nod: EF	PA 7470A			
,		lytical Services							
Mercury	0.00030	mg/L	0.00020	0.000078	1	08/26/21 15:30	08/27/21 14:29	7439-97-6	В
2540C Total Dissolved Solids	•	Method: SM 2		o Cornoro C	٠,٨				
		iyildai Services	- reachine	e Comers, C)A				
Total Dissolved Solids	253	mg/L	10.0	10.0	1		08/25/21 19:44		
300.0 IC Anions 28 Days	•	Method: EPA 3							
	Pace Ana	lytical Services	- Asheville						
Chloride	4.0	mg/L	1.0	0.60	1		08/27/21 07:20	16887-00-6	
Fluoride	ND	mg/L	0.10	0.050	1		08/27/21 07:20	16984-48-8	
Sulfate	108	mg/L	2.0	1.0	2		08/27/21 18:04	14808-79-8	

Project: HAMMOND AP-4

Pace Project No.: 92555501

Date: 09/13/2021 09:36 AM

QC Batch: 641241 Analysis Method: EPA 6010D
QC Batch Method: EPA 3010A Analysis Description: 6010D ATL

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92555501001, 92555501002, 92555501003, 92555501004, 92555501005, 92555501006, 92555501007,

92555501008, 92555501009, 92555501010, 92555501011, 92555501012, 92555501013, 92555501014,

92555501015, 92555501016

METHOD BLANK: 3365563 Matrix: Water

Associated Lab Samples: 92555501001, 92555501002, 92555501003, 92555501004, 92555501005, 92555501006, 92555501007,

92555501008, 92555501009, 92555501010, 92555501011, 92555501012, 92555501013, 92555501014,

92555501015, 92555501016

Blank Reporting Qualifiers Parameter Units Result Limit MDL Analyzed Calcium mg/L ND 1.0 0.12 08/18/21 18:43 LABORATORY CONTROL SAMPLE: 3365564 Spike LCS LCS % Rec

ParameterUnitsConc.Result% RecLimitsQualifiersCalciummg/L11.010180-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3365565 3365566 MS MSD

92555501001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual 20 M1 Calcium 71.2 71.5 27 75-125 mg/L 71.1 -15

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:

HAMMOND AP-4

Pace Project No.:

92555501

QC Batch:

642523

QC Batch Method: **EPA 3010A** Analysis Method:

EPA 6010D

Analysis Description:

6010D ATL

Laboratory:

Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples:

92555501017

METHOD BLANK: 3371892 Matrix: Water

Associated Lab Samples: 92555501017

Parameter Units

Blank Result Reporting Limit

Analyzed

Qualifiers

Calcium

Calcium

Calcium

Date: 09/13/2021 09:36 AM

mg/L

Units

mg/L

ND

1.0

MDL

99

0.12 08/24/21 19:17

LABORATORY CONTROL SAMPLE: Parameter

3371893

Spike Conc.

LCS Result

0.99J

3371895

208

LCS % Rec % Rec Limits

80-120

Qualifiers

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:

3371894

203

92555504012 Parameter Units Result

mg/L

MS

MS Result

MSD Result MSD

% Rec

Max RPD

Qual

MSD Spike Spike Conc. Conc.

205

% Rec 523

MS

% Rec 223

RPD Limits 75-125

20 M1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: HAMMOND AP-4

Pace Project No.: 92555501

Date: 09/13/2021 09:36 AM

QC Batch: 641254 Analysis Method: EPA 6020B
QC Batch Method: EPA 3005A Analysis Description: 6020 MET

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92555501001, 92555501002, 92555501003, 92555501004, 92555501005, 92555501006, 92555501007,

92555501008, 92555501009, 92555501010, 92555501011, 92555501012, 92555501013, 92555501014,

92555501015, 92555501016

METHOD BLANK: 3365648 Matrix: Water

Associated Lab Samples: 92555501001, 92555501002, 92555501003, 92555501004, 92555501005, 92555501006, 92555501007,

92555501008, 92555501009, 92555501010, 92555501011, 92555501012, 92555501013, 92555501014,

92555501015, 92555501016

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
A = 4 i = 2 = 2 : .				0.00070	00/40/04 44:04	
Antimony	mg/L	0.0012J	0.0030	0.00078	08/19/21 14:24	
Arsenic	mg/L	ND	0.0050	0.0011	08/19/21 14:24	
Barium	mg/L	ND	0.0050	0.00067	08/19/21 14:24	
Beryllium	mg/L	ND	0.00050	0.000054	08/19/21 14:24	
Boron	mg/L	ND	0.040	0.0086	08/19/21 14:24	
Cadmium	mg/L	ND	0.00050	0.00011	08/19/21 14:24	
Chromium	mg/L	ND	0.0050	0.0011	08/19/21 14:24	
Cobalt	mg/L	ND	0.0050	0.00039	08/19/21 14:24	
Lead	mg/L	ND	0.0010	0.00089	08/19/21 14:24	
Lithium	mg/L	ND	0.030	0.00073	08/19/21 14:24	
Molybdenum	mg/L	ND	0.010	0.00074	08/19/21 14:24	
Selenium	mg/L	ND	0.0050	0.0014	08/19/21 14:24	
Thallium	mg/L	ND	0.0010	0.00018	08/19/21 14:24	

LABORATORY CONTROL SAMPLE:	3365649					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Antimony	mg/L	0.1	0.11	106	80-120	
Arsenic	mg/L	0.1	0.10	100	80-120	
Barium	mg/L	0.1	0.099	99	80-120	
Beryllium	mg/L	0.1	0.097	97	80-120	
Boron	mg/L	1	0.99	99	80-120	
Cadmium	mg/L	0.1	0.10	102	80-120	
Chromium	mg/L	0.1	0.10	103	80-120	
Cobalt	mg/L	0.1	0.10	101	80-120	
Lead	mg/L	0.1	0.10	100	80-120	
Lithium	mg/L	0.1	0.10	101	80-120	
Molybdenum	mg/L	0.1	0.10	103	80-120	
Selenium	mg/L	0.1	0.099	99	80-120	
Thallium	mg/L	0.1	0.10	100	80-120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: HAMMOND AP-4

Pace Project No.: 92555501

Date: 09/13/2021 09:36 AM

MATRIX SPIKE & MATRIX	SPIKE DUPL	ICATE: 3365	650 MS	MSD	3365651							
Parameter	Units	92555501002 Result	Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qua
Antimony	 mg/L		0.1	0.1	0.11	0.10	105	104	75-125			
Arsenic	mg/L	0.0013J	0.1	0.1	0.10	0.10	99	99	75-125	0	_	
Barium	mg/L	0.10	0.1	0.1	0.20	0.20	98	97	75-125	1	20	
Beryllium	mg/L	ND	0.1	0.1	0.094	0.096	94	96	75-125	2	20	
Boron	mg/L	0.012J	1	1	1.0	1.0	98	99	75-125	0	20	
Cadmium	mg/L	ND	0.1	0.1	0.10	0.10	100	100	75-125	0	20	
Chromium	mg/L	ND	0.1	0.1	0.10	0.10	103	104	75-125	1	20	
Cobalt	mg/L	ND	0.1	0.1	0.10	0.10	100	100	75-125	0	20	
Lead	mg/L	ND	0.1	0.1	0.097	0.097	97	97	75-125	1	20	
Lithium	mg/L	0.0037J	0.1	0.1	0.098	0.10	95	97	75-125	3	20	
Molybdenum	mg/L	0.0019J	0.1	0.1	0.11	0.10	103	102	75-125	1	20	
Selenium	mg/L	ND	0.1	0.1	0.098	0.096	98	96	75-125	2	20	
Thallium	mg/L	ND	0.1	0.1	0.099	0.097	99	97	75-125	2	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: HAMMOND AP-4

Pace Project No.: 92555501

Date: 09/13/2021 09:36 AM

QC Batch: 642521 QC Batch Method: EPA 3005A

Analysis Method:
Analysis Description:

nalysis Description: 6020 MET

Laboratory: Pace Analytical Services - Peachtree Corners, GA

EPA 6020B

Associated Lab Samples: 92555501017

METHOD BLANK: 3371879 Matrix: Water

Associated Lab Samples: 92555501017

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Antimony	mg/L	ND	0.0030	0.00078	08/27/21 12:56	
Arsenic	mg/L	ND	0.0050	0.0011	08/27/21 12:56	
Barium	mg/L	ND	0.0050	0.00067	08/27/21 12:56	
Beryllium	mg/L	ND	0.00050	0.000054	08/27/21 12:56	
Boron	mg/L	ND	0.040	0.0086	08/27/21 12:56	
Cadmium	mg/L	ND	0.00050	0.00011	08/27/21 12:56	
Chromium	mg/L	ND	0.0050	0.0011	08/27/21 12:56	
Cobalt	mg/L	ND	0.0050	0.00039	08/27/21 12:56	
_ead	mg/L	ND	0.0010	0.00089	08/27/21 12:56	
Lithium	mg/L	ND	0.030	0.00073	08/27/21 12:56	
Nolybdenum	mg/L	ND	0.010	0.00074	08/27/21 12:56	
Selenium	mg/L	ND	0.0050	0.0014	08/27/21 12:56	
Γhallium	mg/L	ND	0.0010	0.00018	08/27/21 12:56	

LABORATORY CONTROL SAMPLE:	3371880					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Antimony	mg/L	0.1	0.10	103	80-120	
Arsenic	mg/L	0.1	0.098	98	80-120	
Barium	mg/L	0.1	0.10	101	80-120	
Beryllium	mg/L	0.1	0.099	99	80-120	
Boron	mg/L	1	1.0	100	80-120	
Cadmium	mg/L	0.1	0.099	99	80-120	
Chromium	mg/L	0.1	0.10	101	80-120	
Cobalt	mg/L	0.1	0.097	97	80-120	
Lead	mg/L	0.1	0.10	101	80-120	
Lithium	mg/L	0.1	0.099	99	80-120	
Molybdenum	mg/L	0.1	0.10	103	80-120	
Selenium	mg/L	0.1	0.10	100	80-120	
Thallium	mg/L	0.1	0.10	100	80-120	

MATRIX SPIKE & MATRIX S	SPIKE DUPLI	CATE: 3371	881		3371882							
	,	92555501017	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Antimony	mg/L	ND	0.1	0.1	0.099	0.10	99	102	75-125	3	20	
Arsenic	ma/L	ND	0.1	0.1	0.095	0.096	95	96	75-125	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: HAMMOND AP-4

Pace Project No.: 92555501

Date: 09/13/2021 09:36 AM

MATRIX SPIKE & MATRIX	SPIKE DUPLIC	CATE: 3371			3371882							
Parameter	g Units	2555501017 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Barium	mg/L	0.041	0.1	0.1	0.16	0.16	114	117	75-125	1	20	
Beryllium	mg/L	0.000056J	0.1	0.1	0.092	0.094	92	94	75-125	3	20	
Boron	mg/L	0.78	1	1	1.8	1.9	103	108	75-125	3	20	
Cadmium	mg/L	0.0012	0.1	0.1	0.097	0.098	96	97	75-125	2	20	
Chromium	mg/L	ND	0.1	0.1	0.097	0.098	97	98	75-125	1	20	
Cobalt	mg/L	0.017	0.1	0.1	0.11	0.11	91	96	75-125	4	20	
Lead	mg/L	ND	0.1	0.1	0.094	0.097	93	97	75-125	4	20	
Lithium	mg/L	0.0017J	0.1	0.1	0.095	0.098	93	96	75-125	3	20	
Molybdenum	mg/L	ND	0.1	0.1	0.10	0.10	100	101	75-125	1	20	
Selenium	mg/L	ND	0.1	0.1	0.095	0.097	95	97	75-125	3	20	
Thallium	mg/L	ND	0.1	0.1	0.094	0.099	94	99	75-125	5	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: HAMMOND AP-4

Pace Project No.: 92555501

Date: 09/13/2021 09:36 AM

QC Batch: 643221 Analysis Method: EPA 7470A

QC Batch Method: EPA 7470A Analysis Description: 7470 Mercury

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92555501001, 92555501002, 92555501003, 92555501004, 92555501005, 92555501006, 92555501007,

92555501008, 92555501009, 92555501010, 92555501011, 92555501012, 92555501013, 92555501014,

92555501015, 92555501016, 92555501017

METHOD BLANK: 3375102 Matrix: Water

Associated Lab Samples: 92555501001, 92555501002, 92555501003, 92555501004, 92555501005, 92555501006, 92555501007,

92555501008, 92555501009, 92555501010, 92555501011, 92555501012, 92555501013, 92555501014,

92555501015, 92555501016, 92555501017

Blank Reporting Qualifiers Parameter Units Result Limit MDL Analyzed Mercury 0.00010J 0.00020 0.000078 08/27/21 13:14 mg/L LABORATORY CONTROL SAMPLE: 3375103

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Mercury mg/L 0.0025 0.0021 84 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3375104 3375105 MS MSD

92555501001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual Mercury 0.000081J 0.0025 0.0025 0.0021 0.0022 81 75-125 20 mg/L 85

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: HAMMOND AP-4

Pace Project No.: 92555501

QC Batch: 640931 Analysis Method: SM 2540C-2011

QC Batch Method: SM 2540C-2011 Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92555501001, 92555501002, 92555501003, 92555501004, 92555501005, 92555501006

METHOD BLANK: 3363778 Matrix: Water

Associated Lab Samples: 92555501001, 92555501002, 92555501003, 92555501004, 92555501005, 92555501006

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Total Dissolved Solids mg/L ND 10.0 10.0 08/18/21 08:29

LABORATORY CONTROL SAMPLE: 3363779

Spike LCS LCS % Rec Conc. % Rec Limits Qualifiers Parameter Units Result **Total Dissolved Solids** 388 97 90-111 mg/L

SAMPLE DUPLICATE: 3363780

92555514001 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers 366 **Total Dissolved Solids** 3 mg/L 378 10

SAMPLE DUPLICATE: 3363781

Date: 09/13/2021 09:36 AM

92555501001 Dup Max RPD RPD Parameter Units Result Result Qualifiers Total Dissolved Solids 212 2 mg/L 217 10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: HAMMOND AP-4

Pace Project No.: 92555501

QC Batch: 641466 Analysis Method: SM 2540C-2011

QC Batch Method: SM 2540C-2011 Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92555501007, 92555501008, 92555501009, 92555501010, 92555501011, 92555501012, 92555501013,

92555501014, 92555501015, 92555501016

METHOD BLANK: 3366949 Matrix: Water

Associated Lab Samples: 92555501007, 92555501008, 92555501009, 92555501010, 92555501011, 92555501012, 92555501013,

92555501014, 92555501015, 92555501016

ParameterUnitsBlank Reporting ResultReporting LimitMDLAnalyzedQualifiersTotal Dissolved Solidsmg/LND10.010.008/19/21 15:09

LABORATORY CONTROL SAMPLE: 3366950

LCS LCS % Rec Spike Parameter Units Result % Rec Limits Qualifiers Conc. **Total Dissolved Solids** mg/L 400 401 100 90-111

SAMPLE DUPLICATE: 3366951

92555514003 Dup Max **RPD RPD** Parameter Units Result Result Qualifiers 118 131 10 10 **Total Dissolved Solids** mg/L

SAMPLE DUPLICATE: 3366952

Date: 09/13/2021 09:36 AM

92555514005 Dup Max RPD RPD Parameter Units Result Result Qualifiers **Total Dissolved Solids** mg/L 272 268 1 10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:

HAMMOND AP-4

Pace Project No.:

92555501

QC Batch:

642674

QC Batch Method: SM 2540C-2011 Analysis Method:

SM 2540C-2011

Analysis Description:

2540C Total Dissolved Solids

Laboratory:

Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples:

92555501017

Matrix: Water

METHOD BLANK: 3372854 Associated Lab Samples:

92555501017

Blank Reporting

Parameter

Units Result Limit

Analyzed

Qualifiers

Total Dissolved Solids

mg/L

Units

mg/L

Units

mg/L

ND

10.0

10.0 08/25/21 19:40

LABORATORY CONTROL SAMPLE: Parameter

3372855

Spike Conc.

LCS Result

LCS % Rec % Rec Limits

Qualifiers

SAMPLE DUPLICATE: 3372856

Total Dissolved Solids

Parameter

92555948018 Result

682

22.0

400

Dup Result

726

409

RPD

6

102

MDL

Max **RPD**

10

10 D6

90-111

Qualifiers

SAMPLE DUPLICATE: 3372857

Date: 09/13/2021 09:36 AM

Total Dissolved Solids

Parameter Units Total Dissolved Solids mg/L 92557081004 Result

Dup Result 15.0

RPD 38

Max RPD

Qualifiers

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: HAMMOND AP-4

LABORATORY CONTROL CAMPLE: 2260222

Date: 09/13/2021 09:36 AM

Pace Project No.: 92555501

QC Batch: 641753 Analysis Method: EPA 300.0 Rev 2.1 1993

QC Batch Method: EPA 300.0 Rev 2.1 1993 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92555501001, 92555501002, 92555501003, 92555501004, 92555501005, 92555501006

METHOD BLANK: 3368331 Matrix: Water

Associated Lab Samples: 92555501001, 92555501002, 92555501003, 92555501004, 92555501005, 92555501006

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	ND	1.0	0.60	08/19/21 22:58	
Fluoride	mg/L	ND	0.10	0.050	08/19/21 22:58	
Sulfate	mg/L	ND	1.0	0.50	08/19/21 22:58	

LABORATORY CONTROL SAMPLE.	3300332					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	50	50.2	100	90-110	
Fluoride	mg/L	2.5	2.5	102	90-110	
Sulfate	mg/L	50	50.5	101	90-110	

MATRIX SPIKE & MATRIX SP												
			MS	MSD								
		92554551025	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	3.4	50	50	56.6	56.8	106	107	90-110	0	10	
Fluoride	mg/L	ND	2.5	2.5	2.5	2.5	99	100	90-110	2	10	
Sulfate	mg/L	6.9	50	50	59.8	60.3	106	107	90-110	1	10	

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 3368	335		3368336							
			MS	MSD								
		92555501002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	2.2	50	50	50.0	54.8	95	105	90-110	9	10	
Fluoride	mg/L	0.064J	2.5	2.5	2.4	2.6	92	102	90-110	10	10	
Sulfate	mg/L	4.3	50	50	51.7	56.7	95	105	90-110	9	10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Pace Analytical Services - Asheville

Project: HAMMOND AP-4

Pace Project No.: 92555501

Date: 09/13/2021 09:36 AM

QC Batch: 641754

Analysis Method: EPA 300.0 Rev 2.1 1993

QC Batch Method: EPA 300.0 Rev 2.1 1993 Analysis Description: 300.0 IC Anions
Laboratory: Pace Analytical

Associated Lab Samples: 92555501007, 92555501008

METHOD BLANK: 3368337 Matrix: Water

Associated Lab Samples: 92555501007, 92555501008

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	ND ND	1.0	0.60	08/20/21 06:43	
Fluoride	mg/L	ND	0.10	0.050	08/20/21 06:43	
Sulfate	mg/L	ND	1.0	0.50	08/20/21 06:43	

LABORATORY CONTROL SAMPLE:	3368338					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	50	47.9	96	90-110	
Fluoride	mg/L	2.5	2.4	97	90-110	
Sulfate	mg/L	50	47.3	95	90-110	

MATRIX SPIKE & MATRIX SP		3368340										
			MS	MSD								
		92555514002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	3.5	50	50	53.7	54.7	100	102	90-110	2	10	
Fluoride	mg/L	0.15	2.5	2.5	2.6	2.6	98	99	90-110	1	10	
Sulfate	mg/L	30.5	50	50	81.4	81.9	102	103	90-110	1	10	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3368341 3368342												
			MS	MSD								
		92555652002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	2.3	50	50	52.0	56.1	99	108	90-110	8	10	
Fluoride	mg/L	ND	2.5	2.5	2.4	2.7	96	105	90-110	9	10	
Sulfate	mg/L	8.3	50	50	58.0	62.4	99	108	90-110	7	10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: HAMMOND AP-4

Pace Project No.: 92555501

Date: 09/13/2021 09:36 AM

QC Batch: 641887 Analysis Method: EPA 300.0 Rev 2.1 1993

QC Batch Method: EPA 300.0 Rev 2.1 1993 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92555501009, 92555501010, 92555501011, 92555501012

METHOD BLANK: 3368749 Matrix: Water

Associated Lab Samples: 92555501009, 92555501010, 92555501011, 92555501012

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	ND	1.0	0.60	08/20/21 15:20	
Fluoride	mg/L	ND	0.10	0.050	08/20/21 15:20	
Sulfate	mg/L	ND	1.0	0.50	08/20/21 15:20	

LABORATORY CONTROL SAMPLE: 3368750 Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Chloride 50 103 mg/L 51.5 90-110 Fluoride 2.5 mg/L 2.5 99 90-110 Sulfate 51.4 103 mg/L 50 90-110

MATRIX SPIKE & MATRIX SP	3368752											
			MS	MSD					_			
		92556598001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	13.8	50	50	63.6	64.6	100	102	90-110	2	10	
Fluoride	mg/L	ND	2.5	2.5	2.7	2.7	107	108	90-110	1	10	
Sulfate	mg/L	2.1	50	50	52.0	52.9	100	102	90-110	2	10	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3368753 3368754												
			MS	MSD								
		92555514006	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	2.6	50	50	53.3	54.0	101	103	90-110	1	10	
Fluoride	mg/L	0.065J	2.5	2.5	2.6	2.6	102	103	90-110	1	10	
Sulfate	mg/L	42.1	50	50	90.9	91.6	98	99	90-110	1	10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: HA

HAMMOND AP-4

Pace Project No.:

QC Batch Method:

92555501

QC Batch:

641893

EPA 300.0 Rev 2.1 1993

Analysis Method:

EPA 300.0 Rev 2.1 1993

Analysis Description:

300.0 IC Anions

Laboratory:

Pace Analytical Services - Asheville

Associated Lab Samples:

METHOD BLANK: 3368781

Matrix: Water

Associated Lab Samples:

Date: 09/13/2021 09:36 AM

92555501013

92555501013

Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	ND	1.0	0.60	08/20/21 17:02	
Fluoride	mg/L	ND	0.10	0.050	08/20/21 17:02	
Sulfate	mg/L	ND	1.0	0.50	08/20/21 17:02	

LABORATORY CONTROL SAMPLE:	3368782					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	50	49.3	99	90-110	
Fluoride	mg/L	2.5	2.5	101	90-110	
Sulfate	mg/L	50	49.5	99	90-110	

MATRIX SPIKE & MATRIX SP		3368784										
			MS	MSD					_			
		92554403009	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	21.0	50	50	70.3	68.4	99	95	90-110	3	10	
Fluoride	mg/L	0.080J	2.5	2.5	2.3	2.3	90	87	90-110	3	10	M1
Sulfate	mg/L	129	50	50	175	177	94	97	90-110	1	10	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3368785 3368786												
			MS	MSD								
		92554403019	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	2.5	50	50	48.0	50.1	91	95	90-110	4	10	
Fluoride	mg/L	ND	2.5	2.5	2.0	2.1	79	82	90-110	4	10	M1
Sulfate	mg/L	76.5	50	50	124	123	95	93	90-110	1	10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: HAMMOND AP-4

LABORATORY CONTROL CAMPLE: 2270172

Date: 09/13/2021 09:36 AM

Pace Project No.: 92555501

QC Batch: 642138 Analysis Method: EPA 300.0 Rev 2.1 1993

QC Batch Method: EPA 300.0 Rev 2.1 1993 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92555501014, 92555501015, 92555501016

METHOD BLANK: 3370171 Matrix: Water

Associated Lab Samples: 92555501014, 92555501015, 92555501016

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	ND	1.0	0.60	08/22/21 20:47	
Fluoride	mg/L	ND	0.10	0.050	08/22/21 20:47	
Sulfate	mg/L	ND	1.0	0.50	08/22/21 20:47	

LABORATORY CONTROL SAMPLE:	33/01/2					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	50	49.1	98	90-110	
Fluoride	mg/L	2.5	2.4	98	90-110	
Sulfate	mg/L	50	48.8	98	90-110	

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 3370	173		3370174							
			MS	MSD								
		92555535001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	14.0	50	50	65.0	66.6	102	105	90-110	2	10	
Fluoride	mg/L	0.19	2.5	2.5	2.7	2.8	102	104	90-110	2	10	
Sulfate	mg/L	35.2	50	50	84.4	85.9	98	101	90-110	2	10	

MATRIX SPIKE & MATRIX SP	IKE DUPI	ICATE: 3370	177		3370178							
			MS	MSD								
		92555938002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	2.4	50	50	54.7	55.6	104	106	90-110	2	10	
Fluoride	mg/L	0.39	2.5	2.5	3.0	3.0	104	106	90-110	2	10	
Sulfate	mg/L	211	50	50	255	257	88	92	90-110	1	10	M1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: HAM

HAMMOND AP-4

Pace Project No.:

92555501

QC Batch:

QC Batch Method:

643305

Analysis Method:

EPA 300.0 Rev 2.1 1993

ch Method: EPA 300.0 Rev 2.1 1993

Analysis Description:

300.0 IC Anions

Laboratory:

Pace Analytical Services - Asheville

Associated Lab Samples:

92555501017

Matrix: Water

METHOD BLANK: 3375684 Associated Lab Samples: 9

Date: 09/13/2021 09:36 AM

92555501017

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	ND	1.0	0.60	08/26/21 22:51	
Fluoride	mg/L	ND	0.10	0.050	08/26/21 22:51	
Sulfate	mg/L	ND	1.0	0.50	08/26/21 22:51	

LABORATORY CONTROL SAMPLE:	3375685					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	50	45.9	92	90-110	
Fluoride	mg/L	2.5	2.3	93	90-110	
Sulfate	ma/L	50	46.3	93	90-110	

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 3375	686		3375687							
			MS	MSD								
		92556821008	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	124	50	50	166	167	84	86	90-110	1	10	M1
Fluoride	mg/L	2.5	2.5	2.5	2.9	2.9	19	19	90-110	0	10	M1
Sulfate	mg/L	315	50	50	353	355	75	80	90-110	1	10	M1

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 3375	688		3375689							
			MS	MSD								
		92557476001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	12.3	50	50	59.9	60.1	95	96	90-110	0	10	
Fluoride	mg/L	ND	2.5	2.5	2.4	2.4	95	95	90-110	0	10	
Sulfate	mg/L	3.0	50	50	51.2	51.5	96	97	90-110	1	10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: HAMMOND AP-4

Pace Project No.: 92555501

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 09/13/2021 09:36 AM

B Analyte was detected in the associated method blank.

D6 The precision between the sample and sample duplicate exceeded laboratory control limits.

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: HAMMOND AP-4

Pace Project No.: 92555501

Date: 09/13/2021 09:36 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytic Batch
2555501001	HGWA-47				
2555501002	HGWA-48D				
2555501003	HGWA-111				
2555501004	HGWA-112				
2555501005	HGWA-113				
2555501006	HGWC-117A				
2555501007	HGWC-102				
2555501008	HGWC-105				
2555501009	HGWC-107				
2555501010	HGWC-109				
2555501011	HGWC-118				
2555501013	HGWC-101				
2555501014	HGWC-103				
2555501017	HGWC-117				
2555501001	HGWA-47	EPA 3010A	641241	EPA 6010D	641346
2555501002	HGWA-48D	EPA 3010A	641241	EPA 6010D	641346
2555501002	HGWA-111	EPA 3010A	641241	EPA 6010D	641346
2555501004	HGWA-112	EPA 3010A	641241	EPA 6010D	641346
255550100 4 2555501005	HGWA-113	EPA 3010A	641241	EPA 6010D	641346
2555501005 2555501006	HGWC-117A	EPA 3010A	641241	EPA 6010D	641346
2555501000 2555501007	HGWC-102	EPA 3010A	641241	EPA 6010D	641346
2555501007 2555501008	HGWC-102	EPA 3010A	641241	EPA 6010D	641346
2555501000	HGWC-107	EPA 3010A	641241	EPA 6010D	641346
2555501009 2555501010	HGWC-107	EPA 3010A	641241	EPA 6010D	641346
2555501010 2555501011	HGWC-118	EPA 3010A	641241	EPA 6010D	641346
2555501011 2555501012	DUP-4	EPA 3010A EPA 3010A	641241	EPA 6010D	641346
2555501012 2555501013	HGWC-101	EPA 3010A EPA 3010A	641241	EPA 6010D	641346
2555501014	HGWC-103	EPA 3010A	641241	EPA 6010D	641346
255550101 4 2555501015	FB-4	EPA 3010A	641241	EPA 6010D	641346
2555501015 2555501016	EB-4	EPA 3010A	641241	EPA 6010D	641346
2555501017	HGWC-117	EPA 3010A	642523	EPA 6010D	642626
2555501001	HGWA-47	EPA 3005A	641254		
2555501001 2555501002	HGWA-48D	EPA 3005A EPA 3005A	641254	EPA 6020B EPA 6020B	641359
2555501002 2555501003	HGWA-46D HGWA-111				641359
		EPA 3005A	641254	EPA 6020B	641359
2555501004	HGWA-112	EPA 3005A	641254	EPA 6020B	641359
2555501005	HGWA-113	EPA 3005A	641254	EPA 6020B	641359
2555501006	HGWC-117A	EPA 3005A	641254	EPA 6020B	641359
2555501007	HGWC-102	EPA 3005A	641254	EPA 6020B	641359
2555501008	HGWC-105	EPA 3005A	641254	EPA 6020B	641359
2555501009	HGWC-107	EPA 3005A	641254	EPA 6020B	641359
2555501010	HGWC-109	EPA 3005A	641254	EPA 6020B	641359
2555501011	HGWC-118	EPA 3005A	641254	EPA 6020B	641359
2555501012	DUP-4	EPA 3005A	641254	EPA 6020B	641359
2555501013	HGWC-101	EPA 3005A	641254	EPA 6020B	641359
2555501014	HGWC-103	EPA 3005A	641254	EPA 6020B	641359
2555501015	FB-4	EPA 3005A	641254	EPA 6020B	641359
2555501016	EB-4	EPA 3005A	641254	EPA 6020B	641359

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: HAMMOND AP-4

Pace Project No.: 92555501

Date: 09/13/2021 09:36 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
92555501017	HGWC-117	EPA 3005A	642521	EPA 6020B	642652
2555501001	HGWA-47	EPA 7470A	643221	EPA 7470A	643598
2555501002	HGWA-48D	EPA 7470A	643221	EPA 7470A	643598
2555501003	HGWA-111	EPA 7470A	643221	EPA 7470A	643598
2555501004	HGWA-112	EPA 7470A	643221	EPA 7470A	643598
2555501005	HGWA-113	EPA 7470A	643221	EPA 7470A	643598
2555501006	HGWC-117A	EPA 7470A	643221	EPA 7470A	643598
2555501007	HGWC-102	EPA 7470A	643221	EPA 7470A	643598
2555501008	HGWC-105	EPA 7470A	643221	EPA 7470A	643598
2555501009	HGWC-107	EPA 7470A	643221	EPA 7470A	643598
2555501010	HGWC-109	EPA 7470A	643221	EPA 7470A	643598
2555501011	HGWC-118	EPA 7470A	643221	EPA 7470A	643598
2555501012	DUP-4	EPA 7470A	643221	EPA 7470A	643598
2555501013	HGWC-101	EPA 7470A	643221	EPA 7470A	643598
2555501014	HGWC-103	EPA 7470A	643221	EPA 7470A	643598
2555501015	FB-4	EPA 7470A	643221	EPA 7470A	643598
2555501016	EB-4	EPA 7470A	643221	EPA 7470A	643598
2555501017	HGWC-117	EPA 7470A	643221	EPA 7470A	643598
2555501001	HGWA-47	SM 2540C-2011	640931		
2555501002	HGWA-48D	SM 2540C-2011	640931		
2555501003	HGWA-111	SM 2540C-2011	640931		
2555501004	HGWA-112	SM 2540C-2011	640931		
2555501005	HGWA-113	SM 2540C-2011	640931		
2555501006	HGWC-117A	SM 2540C-2011	640931		
2555501007	HGWC-102	SM 2540C-2011	641466		
2555501008	HGWC-105	SM 2540C-2011	641466		
2555501009	HGWC-107	SM 2540C-2011	641466		
2555501010	HGWC-109	SM 2540C-2011	641466		
2555501011	HGWC-118	SM 2540C-2011	641466		
2555501012	DUP-4	SM 2540C-2011	641466		
2555501013	HGWC-101	SM 2540C-2011	641466		
2555501014	HGWC-103	SM 2540C-2011	641466		
2555501015	FB-4	SM 2540C-2011	641466		
2555501016	EB-4	SM 2540C-2011	641466		
2555501017	HGWC-117	SM 2540C-2011	642674		
2555501001	HGWA-47	EPA 300.0 Rev 2.1 1993	641753		
2555501002	HGWA-48D	EPA 300.0 Rev 2.1 1993	641753		
2555501003	HGWA-111	EPA 300.0 Rev 2.1 1993	641753		
2555501004	HGWA-112	EPA 300.0 Rev 2.1 1993	641753		
2555501005	HGWA-113	EPA 300.0 Rev 2.1 1993	641753		
2555501006	HGWC-117A	EPA 300.0 Rev 2.1 1993	641753		
2555501007	HGWC-102	EPA 300.0 Rev 2.1 1993	641754		
2555501008	HGWC-105	EPA 300.0 Rev 2.1 1993	641754		
2555501009	HGWC-107	EPA 300.0 Rev 2.1 1993	641887		
2555501010	HGWC-109	EPA 300.0 Rev 2.1 1993	641887		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: HAMMOND AP-4

Pace Project No.: 92555501

Date: 09/13/2021 09:36 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
92555501011	HGWC-118	EPA 300.0 Rev 2.1 1993	641887		
92555501012	DUP-4	EPA 300.0 Rev 2.1 1993	641887		
92555501013	HGWC-101	EPA 300.0 Rev 2.1 1993	641893		
92555501014	HGWC-103	EPA 300.0 Rev 2.1 1993	642138		
92555501015	FB-4	EPA 300.0 Rev 2.1 1993	642138		
92555501016	EB-4	EPA 300.0 Rev 2.1 1993	642138		
92555501017	HGWC-117	EPA 300.0 Rev 2.1 1993	643305		

Pace Analytical

Document Name: Sample Condition Upon Receipt(SCUR)

Document No.: F-CAR-CS-033-Rev.07 Document Revised: October 28, 2020

Page 1 of 2

Issuing Authority: Pace Carolinas Quality Office

Laboratory receiving samples: Asheville Eden Greenwood	☐ Hunter	sville [Rale	igh[Mechanicsville
Sample Condition Upon Receipt Client Name:	Pawe			Proj	ect #: WO# : 92555501
Courier: Fed Ex JUP		S	a	lient	92555501
Custody Seal Present? ☐Yes ☐NO S	eals Intact?	□Yes	□N	0	Date/Initials Person Examining Contents: 813 21
Packing Material: Bubble Wrap Thermometer:	Bubble Bags			Other]Blue	Biological Tissue Frozen? Yes None
Correction Fa Add/Subtraction Fa	t(°C) <u>†</u> 3.7	O	C (check m	naps)	Temp should be above freezing to 6°C Samples out of temp criteria. Samples on ice, cooling process has begun Did samples originate from a foreign source (internationally, including Hawaii and Puerto Rico)?
					Comments/Discrepancy:
Chain of Custody Present?	(Dres	□No	□N/A	1	
Samples Arrived within Hold Time?	Dives	□No	□N/A	2	
Short Hold Time Analysis (<72 hr.)?	□Yes	ONO-	□N/A	3	•
Rush Turn Around Time Requested?	□Yes	- INa	□N/A	4	***
Suffic ent Volume?	(Der	□No	□N/A	5	
Correct Containers Used? -Pace Containers Used?	∐xes ∐yes	□No □No	□N/A □N/A	6	
Containers Intact?	Ayes	□No	□N/A	7	
Dissolved analysis: Samples Field Filtered?	□Yes	□No	EDVA.	8	
Samp e Labels Match COC?	□xc+	□No	□N/A	9.	
-Includes Date/Time/ID/Analysis Matrix:	w			++	112-1-12-12-12-12-12-12-12-12-12-12-12-1
Headspace in VOA Vials (>5-6mm)? Trip B ank Present?	Yes □Yes	□No	EN/A	10.	
Trip B ank Custody Seals Present?	□Yes	□No	ZINK	11	
COMMENTS/SAMPLE DISCREPANCY					Field Data Required? Yes No
				L	ot ID of split containers:
CLIENT NOTIFICATION/RESOLUTION					
Person contacted:		100	Date/T	ime:	
Project Manager SCURF Review:					Date:
Project Manager SRF Review:					Date:

Document Name:

Sample Condition Upon Receipt(SCUR)

Document No.: F-CAR-C5-033-Rev.07 Document Revised: October 28, 2020 Page 2 of 2

Issuing Authority:

WO#: 92555501

PM: NMG

Project #

Due Date: 08/27/21

CLIENT: GA-GA Power

*Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation samples.

Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC, LLHg

**Bottom half of box is to list number of bottles

				_		7																					A COUNTY	
terest.	BP4U-125 ml Plastic Unpreserved (N/A) (Cl-)	BP3U-250 mL Plastic Unpreserved (N/A)	BP2U-500 mL Plastic Unpreserved (N/A)	BP1U-1 liter Plastic Unpreserved (N/A)	BP45-125 mL Plastic H2SO4 (pH < 2) (CI-)	BP3N-250 mL plastic HNO3 (pH < 2)	BP4Z-125 mL Plastic ZN Acetate & NaOH (>9)	8P4C-125 mL Plastic NaOH (pH > 12) (Cl-)	WGFU-Wide-mouthed Glass jar Unpreserved	AG1U-1 liter Amber Unpreserved (N/A) (CI-)	AG1H-1 liter Amber HCl (pH < 2)	AG3U-250 mL Amber Unpreserved [N/A] [CI-]	AG15-1 liter Amber H2SO4 (pH < 2)	AG3S-250 mL Amber H2SO4 (pH < 2)	AG3A(DG3A)-250 mL Amber NH4CI (N/A)(CI-)	DG9H-40 mL VOA HCI (N/A)	VG9T-40 mL VOA Na2S2O3 (N/A)	VG9U-40 mL VOA Unp (N/A)	DG9P-40 mL VOA H3PO4 (N/A)	VOAK (6 vials per kit)-5035 kit (N/A)	V/GK (3 vials per kit)-VPH/Gas kit (N/A)	SP5T-125 mL Sterile Plastic (N/A – lab)	SP2T-250 mL Sterile Plastic (N/A - lab)	BPIN	BP3A-250 mL Plastic (NH2)2SO4 (9.3-9.7)	AGOU-100 mL Amber Unpreserved vials (N/A)	VSGU-20 mL Scintillation vials (N/A)	140 at 120 E
1	K	7	T		1	Yu	X	1				$\dagger \dagger$	/	1	/									X	1			
2	/	1	1		1	Y	X,	/			1	$\dagger \dagger$	/	/	1									X	1			
3	/	1	1		1	X.	X)	1				\dagger	/	/	1	L								X	1			
4	/	1	1		/	X.		1				\dagger	/	/	1								-	D	1			
5	1	Ī	-		1	V	1	1			1	П	/	1	1									X	1			
5	1	1	1		1	X		1			1	T	/	/	1									D	1			
7	1				/	1	1	1			1		7	1	1									1	1			
3	1				1	V	1				1				1									1	1			
9	1				1		V							1	1									1				
10	1				1	1					1		1		1									V				
11	1				1	1								1										1	1			
12					1	1	V	/					1	/	1									1	1			
											ustm					-				,								
5	ample	ID	Туре	e of Pr	eserv	ative	PH	upon	receip	pt	Date	rese	rvatio	n adju	sted	Ti	me pr	eserva	ation		Amo	unt of	Prese	ervativ	e	1	Lot#	

Sample ID	Type of Preservative	pH upon receipt	Date preservation adjusted	Time preservation	Amount of Preservative	Lot #
sample to	Type of Flaseradive	pri upon receipt	Date prepervation adjusted	adjusted	added	LUCH
					×.14.7,1	

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers.

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Section A Required Client Information: Required Project Information. Company: GA Power Reput To: SCS Contacts							ection C woice Information. Iteration. Southern Co.											Page:			or 1							
Address Atlanta, GA Copy To: Geosyntec Contac						te	Goodfull Go,																					
Constitution of the contract o						10		-		Addre		114110					_		-		REGULATORY AGENCY							
Email To SCS Contacts Purchase Order No.																						NPDES		GROUND WATER		EF		G WATER
nu:	Fax:	Project Name Hammond AP-4							Pace Quate Raference. Pace Poynt Keyin Herding												UST	neige .	RCRA		-	OTHER	CCR.	
Requested Due Date/TAT: 10 Day Project Number:						Pace Proset Kevin Herring Pare Plotte #. 10839							Site	Location	n	GA												
1000	The same same same same same same same sam	Project Nu	mest;							Pape i) in Edit is	10	839									STATE						
-			-	-				-	-						consc	1		Req	uest	ed A	naly	sis Filte	red	(Y/N)				
	Section D Valid Matrix Required Chart Information MATRIX	Codes	to lact	(d)		COLLECTED			Property				servatives			NA										40.0		
	DENKRIGWATER	DW				COMPOSITE		Te Z					Serv	T	TT	+	+	10	E	++	\vdash	++	+	H	- 1889			
	WASTE WATER PRODUCT	VAV	1 3 1			ΤĒ	- CAMPOOL	THE .	TEMP AT COLLECTION							L	. 13	Cd, Sb	Cr, Co, Pb, Li, Hg, Mo, Se, Ti		1		Г					
	sociscito on	SL	(see valid	G=CRAB					E.							1	Analysis Test	O. O.	No.				10		Residual Chlorine (Y/N)			
	SAMPLEID WIPE (A-Z, 0-9 / a) OTHER	AR RA	1 2	6					AT C	CONTAINERS		1		1			Test	Ba, Be.	1g.		1	11			ine			
	Sample IDs MUST BE UNIQUE TISSUE	OT TS	CODE	TYPE					WP.	TAIN	ed						S	SB	3	228					1991			
									표	NO	Serv			d	Tou		ys!	F. As.	Pb,	226/228					o le			
			MATRIX	SAMPLE				7	SAMPLE	# OF C	Unpreserved	9	HCI	NaOH Na.S.O.	Methanol	je.	Analysis	Ca	Co.	RAD 2	TDS	11			sidu			
-	HGWA-47	-	-	No. of Concession, Name of Street, or other Designation, or other	DATE	TIME	DATE	TIME	- William	-	T	-	I	2 2	Ξ	0	-	127	STATE OF THE PARTY	manus.	-	44.	1		8	Pace	Project N	o./ Lab I.
-	HGWA-48D		WT	G	8/12/21	11:08			21	5	2	3	-	-	11	4	- Brown	and the same	Kijiri (MWW)	X	10000	1	1	\Box	\perp	pH = 7.38 pH = 7.44		.38
	HGWA-111		WT	a	8/12/21	11:30		-	22	5	2	3	-	+	+	-	X	and and	X	Same Chiefly	X	+-	+		+			.44
-	HGWA-112		WT	6	8/12/21	13:15			24	5	2	3		-	\sqcup	4	Perm	X	demand	-	STREET, SQUARE,	\perp	+		pH ≈ 6.			
	HGWA-113			G	8/12/21	12.55	-	-	21	5	2	3	H	+	+	+	-	X	_	_	-	++-	+	HH	+		pH = 5	
	HGWC-117A		WT G 6/12/21			17.57		1		TO SHARE	-	3	-	+	+	\dashv	gw.	X	efferenced)	Beauties (I)	X X	+	+	HH	++		pH = 6	
					0/12/21	17.37		 	23	2	-	3	H	+	+	+	-	X	X	_	-	++	+	HH	+		pH = 6	.27
								-	-	-	+	+	-	+	+	-	-	+	-	-	-	++	+-	+++	+	·		
				T					-	The same of	-	+	\vdash	+	††	-	-	+	H	-	+	++	+	H	$\dashv \dashv$			
,				1					F		1	+	=	+	+	1	-	+	lose	1	-	++	+	+++	+		TJ	
1				7						-	1	1	H	+	\forall		F	T	1	-	-	+	=		+		8/12/2	021
2				1						-	1	1	1	+	+	1	-	+		1	+	11	+		7		UIIZIZ	021
ADDITIONAL COMMENTS RELINQUISHED BY I assence note dry wells, strike thorough any wells not sampled, dinote when the last sample for the event has been taken.		HED BY /	AFFILIATION DATE					TIME ACCEPTED BY / AFFILIATION						N	-	DATE	-	TIME	molecul	SAMP	LE CONDITI	ONS						
		16,00 8/13/21			-					-	-					-	-	-		*********								
							1445 Conno (51	ion Pace					8/13/21		145									
-	The state with the state of the		Conner Coin / Coca				8/3/21			155		Py- Vill:			14	3	11	A CE		1	18/21	1	455			-		
_	The state of the s	Ryan Williams / Pace				PACE		8/13/21		1660		A. Well				14	Daller.				18	1/3/2/	116	256				
_	and depend of the state of the					The Military						X				6	_	/			1	1	1					
							SAMPLER NAME AND SIGNATURE								M-	a the day		Q.	Received on loe (Y/N)	Custody saled Cooker (Y/N)	Samples infact							
			SIGNATURE OF SAMPLER: THOMAS MESSILVE, ASMY Ramsey, Com													-	Temp in	Pa C	C C 6	= = =								

Pace Analytical

Document Name: Sample Condition Upon Receipt(SCUR)

Document No.: F-CAR-CS-033-Rev.07 Document Revised: October 28, 2020
Page 1 of 2
Issuing Authority:
Pace Carolinas Quality Office

Sample Condition Client Name:				Project #:	WO#: 92555501
ourier: Fed Ex UPS	Power Dusps		Cli		PM: NMG Due Date: 08/27/21 CLIENT: GA-GA Power
	lls Intact?	□Yes	□No		Date/Initials Person Examining Contents: 142 KE
king Material: Bubble Wrap Bermometer: HR Gun ID: HH Correction Factorier Temp: 4.3/54 Add/Subtractorier Temp Corrected (°C): 44 DA Regulated Soil (D)/A, water sample)	(°C) _ + C	:e:	e CO	Slue 🔲	Biological Tissue Frozen? Yes No NoA None The process of temp criteria. Samples on ice, cooling process has begun
samples originate in a quarantine zone within the Un	nited States: CA	, NY, or S	C (check ma	ips)? Did inclu	samples originate from a foreign source (internationally, uding Hawaii and Puerto Rico)? ☐ Yes ☐ No
L.,100					Comments/Discrepancy:
Chain of Custody Present?	(Dyes	□No	□N/A	1.	
Samples Arrived within Hold Time?	Byes	□No	□N/A	2.	
Short Hold Time Analysis (<72 hr.)?	□Yes	Dio-	□N/A	3.	
Rush Turn Around Time Requested?	□Yes	(INO	□N/A	4.	
	(Dres	□No	□N/A	5.	
Sufficient Volume? Correct Containers Used?	(Dves	□No	□N/A	6.	
-Pace Containers Used?	□Yes	□No	□N/A		
Containers Intact?	₫¥es	□No	□N/A	7.	
Dissolved analysis: Samples Field Filtered?	□Yes	□No	ON/A-	8.	
Sample Labels Match COC?	△ Yes	□No	□N/A	9.	
-Includes Date/Time/ID/Analysis Matrix:	W				
Headspace in VOA Vials (>5-6mm)?	□Yes	□No	ONA	10.	
Trip Blank Present?	□Yes		€ N/A	11.	
Trip Blank Custody Seals Present?	□Yes	□No	PLOYA		
COMMENTS/SAMPLE DISCREPANCY					Field Data Required? ☐Yes ☐No
				Lot ID	of split containers:
IENT NOTIFICATION/RESOLUTION					
Person contacted:			Date/Ti	me:	

Face Analytical

Document Name: Sample Condition Upon Receipt(SCUR)

Document No.: F-CAR-CS-033-Rev.07

Document Revised: October 28, 2020 Page 2 of 2

Issuing Authority: Page Carolinas Quality Office

WO#: 92555501 Project # PM: NMG

Due Date: 08/27/21

CLIENT: GA-GA Power

*Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation

Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC, LLHg

**Bottom half of box is to list number of bottles

Item#	BP4U-125 mL Plastic Unpreserved (N/A) (CI-)	8P3U-250 mL Plastic Unpreserved (N/A)	BP2U-500 mL Plastic Unpreserved (N/A)	8P1U-1 liter Plastic Unpreserved (N/A)	BP45-125 mL Plastic H2SO4 (pH < 2) (CI·)	BP3N-250 mL plastic HNO3 (pH < 2)	BP42-125 mL Plastic ZN Acetate & NaOH (>9)	BP4C-125 mL Plastic NaOH (pH > 12) (CI-)	WGFU-Wide-mouthed Glass jar Unpreserved	AG1U-1 liter Amber Unpreserved (N/A) (Ci-)	AG1H-1 liter Amber HCl (pH < 2)	AG3U-250 ml Amber Unpreserved (N/A) (CI-)	AG15-1 liter Amber H25O4 (pH < 2)	AG3S-250 mL Amber H2SO4 (pH < 2)	AG3A(DG3A)-250 mL Amber NH4CI (N/A)(CI-)	DG9H-40 mL VOA HCI (N/A)	VG9T-40 mL VOA Na25203 (N/A)	VG9U-40 mL VOA Unp (N/A)	DG9P-40 mL VOA H3PO4 (N/A)	VOAK (6 vials per kit)-5035 kit (N/A)	V/GK (3 vials per kit)-VPH/Gas kit (N/A)	SPST-125 mL Sterile Plastic (N/A – lab)	SP2T-250 mL Sterile Plastic (N/A - lab)	SPIN	BP3A-250 mL Plastic (NH2)2SO4 (9.3-9.7)	AGOU-100 mL Amber Unpreserved vials (N/A)	VSGU-20 mL Scintillation vials (N/A)	DG9U-40 mL Amber Unpreserved vials (N/A)
1	1	1	į		1	Ki	1	1			1		1	1	1									X,				
2	1	1	1		1	X	X	1			1		1	1	1									3	Z			
3	1	1			1	Y	X	1			1		1	1	1									X'	1			
4	1	1	İ		/	Y	1	/			1		1	1	1									T	X			
5	/	1			/	Y	1	/			1		1	1	1									2	1	ĮĘ.		
5	1		li-		1	1	(/			/		1	1	1									X	1			
7	1		1		1	/	/	/			1		1	1	1									1	1			
8	/				1	/	/	/			/		/	1	1	-								1	1			
9	1				1	/	/	/			/		1	/	1	1								/	1			
10	/	-			/	1	/	1			1		1	1	1									/	/			
11	/				/	/	/	/			1		1	1	1	1								/	/			
12	1	-		-	1	1	/	/			/		/	1	1		-		-					/	/			

		pH Ac	Justment Log for Pres	erved Samples		
Sample ID	Type of Preservative	pH upon receipt	Date preservation adjusted	Time preservation adjusted	Amount of Preservative added	Lot#
						-
				, , , , , , , , , , , , , , , , , , ,		

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers.

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

		Section B Required Pro	ject !	nlorma	ıllan.					Section Invoice		rations													Page:	1	*	or 1	
нарап	GA Power	Report To: S	CS	Conta	cts					Altenti	QI''	Sou	en	n Co.			-	-u-hu	-	٦				L	-	-			
ddreus	Atlanta GA	Сору То. С	eosy	ntec	Contact	s			1	Comp	any Na	me.	1					-	_	F	REGU	LATOR	RYA	GEN	ICY				
									7	Addres	35		1							1	N	PDES	F	GR	OUN	D WAT	EII"	DRINKING	WATER
mail To	SCS Contacts	Purchase On	ber No	1.1		-				Pace Q Referen			+		-					1	- u	ST	r	RC			10	OTHER C	R_
hona	Fax.	Project Name	1	lam T	ond AP	-4	-			Pace P	roject	Key	in H	erring	3				-	1	Site L	ocation							
equest	ed Due Date/TAT; 19 Day	Project Numb	er.							_	rathe #	108	39		-					1		STATE			GA	-			
											_	_	+	_		-Out	1	Regi	ueste	d A		is Filte	1	(Y/N)	T			
	Section D Valid Matrix C Required Chart Information MATRIX	odes CODE	0 km)	(AWE)		COLLI	ECTED					Pres	erva	stive		NIN					Ť		T						
	WATER	WT WW	codes	C=COMP)	COMPOSIT	E	сомросп	TÉ.	NOIL				T										T		T		Alexandra Parallella		(MANUFACTURE)
ITEM#	SAMPLEID WIPE (A-Z, 0-97,-) OTHER	AR OT TS	CODE	SAMPLE TYPE (G=GRAB	DATE	TIME	DATE	TIME	SAMPLE TEMP AT COLLECTION	# OF CONTAINERS	Unpreserved	HNO	HCI	NayS ₂ O ₃	Methanol	Other Analysis Thet	Chloride, Fluoride, Sulfate	Full App. III and IV metals	RAD 226/228	TOS						Residual Chlorine (Y/N)	Page	Project No	./ Lab L
1	HGWC-102		NT	G	8/13/21	17:15			21	5	2	3	T		П	T	X	X	diam'r.	-								ρH = 5.4	15
2	HGWC-105		NT	G	8/13/21	15:35	H.		20	5	2	3			П		×	X	X	x								pH = 6.4	14
3	HGWC-107		NT	6	8/13/21	14:10			21	5	2	3					X	X	X	X								pH = 6.	11
4	HGWC-109		NT	G	8/13/21	12:00			23	5	2	3				_	X	×	×	×								pH = 6,	71
5	HGWC-118		WT	G	8/13/21	14:18	_		25	_	2	3	-	1	Н	4	X	×	×	X	-	1-1-	1	\perp	1	\perp		pH = 6	78
7	Dup-4		WT	G	8/13/21	0:00			20	5	2	3	+	+	H	4	×	×	X	X	-		-	+	H	+			
8		\Rightarrow	4	4							H	\forall	1	+	Ħ	7	-	-	\forall	7			+	\top		+			
Э											П																TJ		
10														+	H	_	T	I									8/1	3/2021	
11																	_					1	\pm	\pm					
12																	1												_
Olean	ADDITIONAL COMMENTS note dry wells, white thorough any wells not sampled.	-	-			AFFILIAT		DATE	VENAM	-	IME	-	-	THE PROPERTY.	-	-	-	-	ATION	PRINTERS.	-	DATE	-	TUME	-		SAMP	LE CONDITIO	ONS
	a when it a last nameda but the event has been laker.	Con	חח	N.1	الأحد	/GE	(1	8/16/	al.	132	<u> 3</u> °	K	190	7	Wil	10	7	1	PAG	-		16/2	1 1	32	2				-
		19	<u> </u>	10.0	111	1	162	114	٢	,0	-8	1		100	1	9	N	1	TIM	T	- 6	114	4/4	25	0				
									-																				
						SAMPL	ER NAME	AND SIGN	ATU	COMMUNICATION OF	-			Whene My		*	-			-						Temp in 'C	Received on toe (Y.N.)	Custody Sealed Cooler (Y/N)	Samples Infact
				PRINT Name of SAMPLER: Conspicer Com Ashly Re										B	1 80 9	_													

Document Name: Sample Condition Upon Receipt(SCUR)

Document No.: F-CAR-CS-033-Rev.07 Document Revised: October 28, 2020

Page 1 of 2
Issuing Authority:
Pace Carolinas Quality Office

Asheville Eden Greenwood Huntersville Ralei	gh Mechanicsville Atlanta Kernersville
	TUO#: OOFFFFAA
Sample Condition Upon Receipt GA POWER	Project #: WO#: 92555501
Courler:	PM: NMG Due Date: 08/27/21 CLIENT: GA-GA Power
Custody Seal Present? Yes Ao- Seals Intact? Yes No	Date/Initials Person Examining Contents: 3 17 21 KGW
Packing Material: Bubble Wrap Bubble Bags None	
Thermometer: THROBO Type of Ice:	Blue None
Cooler Temp: Cooler Temp Corrected (°C): USDA Regulated Soil (N/A, water sample) Did samples originate in a quarantine zone within the United States CA, NY, or SC (check many)	Temp should be above freezing to 6°C Samples out of temp criteria. Samples on ice, cooling process has begun aps)? Did samples originate from a foreign source (internationally,
Yes Do	including Hawaii and Puerto Rico]? Yes No-
Chain of Custody Present?	1
Samples Arrived within Hold Time?	2.
Short Hold Time Analysis (<72 hr.)?	3.
Rush Turn Around Time Requested?	4.10 Day
Sufficient Volume? ☐ Yes ☐ No ☐ N/A	5. ()
Correct Containers Used?	6.
Containers Intact?	7.
Dissolved analysis: Samples Field Filtered?	8.
Sample Labels Match COC?	9.
-Includes Date/Time/ID/Analysis Matrix: W	
Headspace in VOA Vials (>5-6mm)?	10.
Trip Blank Present?	11.
Trip Blank Custody Seals Present?	
COMMENTS/SAMPLE DISCREPANCY	Field Data Required? ☐Yes ☐No
The support of the su	Lot ID of split containers:
CLIENT NOTIFICATION/RESOLUTION	
	imar
Person contacted: Date/T	me:
Project Manager SCURF Review:	Date:
Project Manager SRF Review:	Date:

Document Name: Sample Condition Upon Receipt(SCUR)

Document No.: F-CAR-CS-033-Rev.07 Document Revised: October 28, 2020 Page 2 of 2

> Issuing Authority: Pace Carolinas Quality Office

*Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation

DM. NM

Project #

Due Date: 08/27/21

samples.

Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC, LLHg

CLIENT: GA-GA Power

**Bottom half of box is to list number of bottles

Kemil	BP4U-125 mL Plastic Unpreserved (N/A) (CI-)	BP3U-250 mL Plastic Unpreserved (N/A)	BP2U-500 mL Plastic Unpreserved (N/A)	BP1U-1 liter Plastic Unpreserved (N/A)	8P4S-125 mL Plastic H2SO4 (pH < 2) (CI-)	BP3N-250 mL plastic HNO3 (pH < 2)	BP4Z-125 mL Plastic ZN Acetate & NaOH (>9)	BP4C-125 mL Plastic NaOH (pH > 12) (CI-)	WGFU-Wide-mouthed Glass jar Unpreserved	AG1U-1 liter Amber Unpreserved (N/A) (Ci-)	AG1H-1 liter Amber HCl (pH < 2)	AG3U-250 mL Amber Unpreserved (N/A) (CI-)	AG1S-1 liter Amber H2SO4 (pH < 2)	AG3S-250 mL Amber H2SO4 (pH < 2)	AG3A(DG3A)-250 mL Amber NH4Cl (N/A)(Cl-)	DG9H-40 mL VOA HCI (N/A)	VG9T-40 mL VOA Na2S2O3 (N/A)	VG9U-40 mL VOA Unp (N/A)	DG9P-40 mL VOA H3PO4 (N/A)	VOAK (6 vlals per kit)-5035 kit (N/A)	V/GK (3 vials per kit)-VPH/Gas kit (N/A)	SPST-125 mL Sterile Plastic (N/A – lab)	SP2T-250 mL Sterile Plastic (N/A - lab)	BPIN	BP3A-750 mL Plastic (NH2)2504 (9.3-9.7)	AGOU-100 mL Amber Unpreserved vials (N/A)	VSGU-20 mL Scintillation vials {N/A}	DG9U-40 mL Amber Unpreserved vials (N/A)
1	1	1	1		1	The		1			1		1	1	1									2	1			
2	1	1			1	1		1			1		1	1	1									8	7			
3	1	1	1		1	K	1	1			1		1	1	1									X	1			46
4	1	1	1		1	1/V		1			1		1	1	1									2	1			
S	1				1	1	1	1			1		1	1	1				-					1	1			
6	1				1	1	1	1			1		1	1	1									1	1			
7	1				1	1	1	1			1		1	1	1									1	1			
8	1				1	1	1	/			1		1	1	1									1	1			
9	1				1	1	/	/			1		1	1	1	7.								1	1		-	
10	1				1	1	/	1			1		/	1	1									1	/			
11	/				1	1	/	1			1		/	/	/									1	1			
12	1				1	1	/	/			/		/	1	1									1	1			
									pŀ	Adj	ustr	nen	t Lo	g fo	r Pre	eser	ved	Sarr	ple	5								

Adjustment Log for Preserved Samples				
ipt Date preservation adjusted Time preservation Amount of Preservative adjusted added	Date preservation adjusted	pH upon receipt	Type of Preservative	Sample ID

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers.

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custory is a LEGAL DOCUMENT, All relevant fields must be completed accurately.

	lient Information			Section I Required		t Infoh	mation					Sècti Ingoic		mation	ri,			20.5									Piege	. 1		0	e 1		
ombany:	GA Power			Report To:								Attent			uther	n Co	3.																
ddrbse:	Atlanta, GA			Copy To:	Geo	synte	c Contact	S				Comp	eny N	ame:									REG	ULAT	ORY	AGE	NCY				. 1		
												Addra	56:											NPDE	S	G	ROUN	VD W	ATE	1	DRI	NKING !	NATER
mail To:	SCS Conta	cts		Purchase	Order	No.:						Paine C Refere	nce										Ē	UST		R	CRA			-	中	HER CCE	_
hode.		Fax:		Project Na	me:	Han	mond AP	4				Paice P Minnag	, to lact	Ke	vin H	lerrir	g						Site	Loca	tion		Vil		*				
equested	Due Datri AT:	10 Day		Project Nu	mber	•								= 10	839			-	-		_			STA	TE:	-	GA	-					
5				-								-				_	_	1		Reg	uest	ted /	Analy	sis F	litere	d (Y)	N)						
	ction D		Valid Matrix	Codes	1					_					1		_	1		T	T		1	T	П	Ť	İΤ						
Re	quired Chart Inform	nation	MATRIX DRINKING WATER	CODE	(to left)	(COMP)		COLL	ECTED		-		-	Pre	serv	etive	s	- 3	Z F	4	-	\vdash	4	4.	Н	-	1	_					
			WATER WASTE WATER	WT	velid codes	Ö	COMPOST	re .	COMPOSIT	E	Į.				Ш		11	L		1	10										-1		
			PRODUCT SOLUSOLID	P SL	pila.	RAB					TEC				Ш		11											1	Z				
	SAMP	LEID	OIL WIPE AR	Mb Qf	(\$96	(G=GRAB					SAMPLE TEMP AT COLLECTION	R3		1	Ш		Ш		Analysis Test	metals									Residual Chlorine (Y/N)				
	Sumple ID. MU		OTHER	AR OT TS	DE			1 //			AP A	CONTAINERS	2	1	Ш				Test	Ill and IV	1										- 1		
	Sample ILE MC	S I BE DINGUE	115500	15	MATRIX CODE	SAMPLE TYPE					12	ONT	Unpreserved		Ш	5	9 2	1	Analysis	S S	228							19	2				
ITEM#	1				Ê	MPLE					MPLE	OFC	pres	HNO3		Na-S-O	Methanol	Other	na Pa	July App.	AD 226/228						11	1	sidu		- 1		
<u>E</u>					B	SA	DATE	TME	DATE	, TIME ,	SA	*	5	£ £	14:	g g	Me	ਰੋਂ '	4 15		18	SE		1.				_ (2	Pace	Pro	ect No.	Lab LD.
1.		HGWC			ψT	G	8/16/21	12:50			23	5	2	, 3	Ш	1		Ц	2	x, x	X	x						1	1		p	1 = 5,40	
2.		HGWC			₩T	G	8/16/21	10:50	172		19	5	2	3	111	1			2	<u> </u>	X	x	Ш	1							p!	1 = 5.59	
3.		FB-			ŴΤ	G	8/16/2]	11:30			19	5	2	. 3	Ш			Ц	2	x. x	X	×	Щ	1	Ш				1		1		
4.		EB-	1		WY	G	8/16/21	11:30			19	5	2	. 3	Ш	1	-	Ц	2	x, x	X	×	4	1.	Ш		1.1	1		Last Sa	mple		
5					1	_							H	-	Ш	1		Ц	L	4	1		4	1.			1.1	_	-	- 1	-		
6.					L				-		-	-	Н		Ш	1		Ц	1	4	1	_	4	1.		1	1.1	4	4		_		
7.					1			-	-		1	-	Н		Ш	1	\perp	Ц	L	4	4	_	4	1.		1	1.1	1	4		-		
В.	-					-	-				+	-	H	4	111	+	-	Н	-	4	٠,	_		1		4	44		1	LJ			
0	- 4-				-	-	-	-	-		-	-	H	,	П	+	+	H	+	4	1		-	-	-	\vdash	44	-	4	8/16	<u>/20</u>	21.	-
18				- American	+	-		-	-		+	-	Н		44	+	+	Н	-	4	F	F		+	+	4	\perp	H	4			<u></u>	
11					-	-	-				-	-	H	+	+++	+	+	H	-	+	+	+	-	+	-	1		H	+		-	=	
12	Anton	NAL COMME	TE		Dir.	NO!	SHED BY	ACTUAT	5011	DAT	بلي	+	TIME	+	ш		<u> </u>	Ц	BYII				1.	1		1	با		.1	4			
lease not			wells not sampled	1. 1.1			-	1 10		DATE	-	+	IIME	4	+		LCEP	TED	BYII	AFFA	IATIC	- NC	-	DA	E	- 11	ME	_	-	SAMP	E	ICHTIQUE	, .
and bote w	hen the last sam	ple for the ever	nt has been taken.	- M	Mag	6	1400	10/6	700 (8/11/	_	-		+	=	_	-		4	9									4		\vdash		
					dely		Ramsu			816	17	Ka	0	. 1	20	ne	16	osl	6	16	eu			8/16/19		180							
				1 4	hou	les	huse	160	es	8/17	151	11			Lus	~	Wil	Via	-	10	2 0	~		9/12	131	#2	6		T				
				12	lan	W.	liane	PACE		8/17	121	_	00	1	1	11/1	011	N	2		m		_ 1	vII	7/21		00		1				
-									ER NAME	AND SIG	NATL			1	10	112	1	1	/	1	4			4	40		200		+	c		ž.	Jot.
	1							_	PRINT Nam		-	_	101.1	hey	1)	10.0	"	_	-	-	_	-4-	_	-			Temp in *C		Received on loe (Y/N)	tody	(Y/N)	Samples Intact.
									SIGNATUR	-	•			M	15	W	use.	4	T		E Sig		^	111	1			e e	tue.	loe (Cus	3	eldmin (Y)
	*Important licite	and the North							SIGNATUR	E OI SAM	·		il	K)	_	/					יוםסוי		8	16	IC	150	_,		-			E-b PO	

19	Document Name: Sample Condition Upon Receipt(SCUR)	Document Revised: October 28, 2020 Page 1 of 2
Pace Analytical	Document No.:	Issuing Authority
	F-CAR-CS-033-Rev.07	Pace Carolinas Quality Office

aboratory receiving samples: Asheville	untersv	ille 🔲	Raleig	h	Mechanicsville Atlanta Kernersville
Sample Condition Client Name: Upon Receipt C_A Povel V			- 1	Projec	t#:
ourier:	USPS Other			ert	
stody Seal Present? Yes No Seals Inta	ict?	Yes	Zin		Date/Initials Person Examining Contents: 1-15 8/20/2
cking Material: Bubble Wrap Bubble	Bags	None	10	r ther	Biological Tissue Frozen? Yes Mo N/A
	Type of Ic		īVet □6	ine	None
coler Temp: U, G Correction Factor: Add/Subtract (°C)	± C	/			Temp should be above freezing to 6°C
ooler Temp Corrected (°C):					Samples out of temp criteria. Samples on ice, cooling process has begun
SDA Regulated Soil (☐ N/A, water sample) d samples originate in a quarantine zone within the United S ☐ ☐ Yes ☐ No	states · CA	, NY, or S	C (check ma	ps1?	Did samples originate from a foreign source (internationally, including Hawaii and Puerto Rico)? Yes
				Ĭ.	Comments/Discrepancy:
Chain of Custody Present?	Yes	□No	□N/A	Y.L	
Samples Arrived within Hold Time?	Vies	Пло	D1-	1	`
Short Hold Time Analysis (<72 hr.)?	Ye	LINO.	□h./≥	3	- 4
				4	
Rush Turn Around Time Requested?	Yes	, No	□N/A		in the second se
Sufficient Volume?	Yes	ONO	□N/A	5	
Correct Containers Used?	Tyes	No	□N/A	6.	
-Pace Containers Used?	Fies	□No	□n/A	1	THE RESIDENCE OF THE PARTY OF T
Containers Intact?	Tyes	□No	□N/A	7	
Disso ved analysis: Samples Field Filtered?	□Yes	ØN₀_	□N/A	3	
Sample Labels Match COC?	Yes	□No	□N/A	3	
-Includes Date/Time/ID/Analysis Matrix.	T			?	
Headspace in VOA Vials (>5-6mm)?	□Yes	□No	ET A	10.	
Trip Blank Present?	Yes	П.	DA/A	11	
Trip Blank Custody Sea's Present?	□Y25	□No	ANIA		
COMMENTS/SAMPLE DISCREPANCY					Field Data Required? Yes No
CLIENT NOTIFICATION/RESOLUTION				L	ot ID of split containers
CLIENT ROTHCATION/RESOLUTION					
Person contacted			_ Date/	T'me:	
Project Manager SCURF Review:					Date:
Project Manager SRF Review:					Date:

Document Name: Sample Condition Upon Receipt(SCUR) Document No.: F-CAR-CS-033-Rev.07

Page 2 of 2

Issuing Authority:
Pace Carolinas Quality Office

*Check mark top half of box if pH and/or dechlorination is

verified and within the acceptance range for preservation

samples.

Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC, LLHg

**Bottom half of box is to list number of bottles

	BP4U-125 mL Plastic Unpreserved (N/A) (CI-)	BP3U-250 mL Plastic Unpreserved (N/A)	BP2U-500 mL Plastic Unpreserved (N/A)	BP1U-1 liter Plastic Unpreserved (N/A)	BP45-125 mL Plastic H2SO4 (pH < 2) (Cl-)	BP3N-250 mL plastic HNO3 (pH < 2)	BP4Z-125 mL Plastic ZN Acetate & NaOH (>9)	BP4C-125 mL Plastic NaOH (pH > 12) (Cl-)	WGFU-Wide-mouthed Glass jar Unpreserved	AGIU-1 liter Amber Unpreserved (N/A) (CI-)	AG1H-1 liter Amber HCI (pH < 2)	AG3U-250 mL Amber Unpreserved (N/A) (CI-)	AG15-1 liter Amber H2SO4 (pH < 2)	AG3S-250 mL Amber H2SO4 (pH < 2)	AG3A(DG3A)-250 mL Amber NH4Cl (N/A)(Cl-)	DG9H-40 mL VOA HCI (N/A)	VG9T-40 mL VOA Na2S2O3 (N/A)	VG9U-40 mL VOA Unp (N/A)	DG9P-40 mL VOA H3PO4 (N/A)	VOAK (6 vials per kit)-5035 kit (N/A)	V/GK (3 vials per kit)-VPH/Gas kit (N/A)	SPST-125 mL Sterile Plastic (N/A - lab)	SP2T-250 mL Sterile Plastic (N/A - lab)	B91W	BP3A-250 mt. Plastic (NH2)2504 (9.3-9.7)	AGOU-100 mL Amber Unpreserved vials (N/A)	VSGU-20 mL Scintillation vials (N/A)	DG9U-40 mL Amber Unpreserved vials (N/A)
Remail	BPAU	BP3U	BP2U	BP10	BP45	BP3N	8642	BP4C	WGF	AGI	AG11	AG3	AGI	AG3:	AG3	DGB	VG9	69/	DG9	VOA	۸/۵	SPS	SPZ		863	AGC	VSG	99G
1	7	1	1		7	1/		7			1		1	7	7									2	1			
2	1				7	1	7	7			1		7	1	7										7			
3	1				1	1	1	1			1		1	1	1									1	7			
4	1				1	1	1	1			1		1	1	1									1	1			
5	1				1	1	1	1			1		1	1	1									1	1			
6	/				1	1	1	1			1		1	1	1								-	1	1		-	_
7	1				1	1	1	7			1		1	1	1						<u> </u>			1	1			
8	/		-	-	1	/	1	/			1		1	1	1									K	1			
9	1	-			/	1	1	1	-		1		1	1	1	١.						1		1	1			
10	/	-	-	-	1	1	1	/			/	1	/	/	1						***************************************			1	1			
11	/	-	-	-	1	1	/	/	-	-	/	-	/	1	1	-	-		-	-			-	/	1			
12	/	-	-	-	1	1	/	1	-	-	1	-	1	1	1	-	1	-	-			-		1	1			

		pH Ac	justment Log for Pres	erved Samples		
Sample ID	Type of Preservative	pH upon receipt	Date preservation adjusted	Time preservation adjusted	Amount of Preservative added	Lot #

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers.

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

		200																						_			-		
Section Require	n A d Client Information	Section B Required Pro	e t Info	imat on					Sect		C ormatic	w.												Pag	e: 1		of 1	Page 60 of 60	
Compa	GA Power	Report To: St	S Co	ntacts	-				Attent	Mariante	-	disposition	ern (Jo,						1			1	-		-	· AND INC.		-
Address	Atlanta, GA	Capy To: G	osynt	ec Contac	te			-	Comp	pany	Name					-		_		REC	SUL A	TORY	AGEN	ICY				-	
		1						-	Aridre	858.		-	_	-			_	_		10	NPD	None Property		_	ND WAT	=1	DRINKIN	G WATER	-
Email T	SCS Contacts	Purchase Ord	ar No.					_	Pace							_	-			-	UST			CRA		10	OTHER S		
Plione:	Fax:	Project Name	Han	nmond AP	-4			_	Pace I	Ptop	ı K	evin	Herr	ing	_	_	-	-		Sit	e Loca	-		-					
Reques	tesi Due Date/TAT; 10 Day	Project Numb	nt:	_				-	Manag Pace 9		o 4. 11	3838	9	-	_		-		-	-		ATE:		GA					
		1	-				-				-		_	-	_	_	P	earl	actor	Ana	-		d (Y/N	1	2000				
	Section D Valid Matrix	Codes		-		-			T	ī		T-MINE TO	-	-	-			T	T	1]	7010	T		Ĺ					
	Required Clant Information MATRIX DESCRIPTION OF THE PROPERTY	5005	C=COMP)		COLL	ECTED				L	Pr	eser	rvstiv	res	_	Y/ N					1								
	WATER WATER	39T	000	COMPOSI	TE.	COMPOST	16	NOT										1											
	PROJUCT SONUSCLID	p 51	RAB					SAMPLE TEMP AT COLLECTION								Г		8							(XVIX)				
	SAMPLE ID WIFE	OL WP 4R	G-GRAB					100	RS		П					15	Sulfale	It and IV metals) e				
	(A-Z, 0-9 / ,-) OTHER Sample IDs MUST BE UNIQUE TISSUE	15	TYPE					APA	CONTAINERS	pe						, Tëst	ide.	N N							hlan				
26-			ETM					E TE	TNO	Servi				0	0	ysis	Fluor	III an	72.28						lal C				
ITEM#		No.	SAMPLE					MPL	# OF C	Unpreserved	HASO4	7	NaOH	252	her	Analysis	Chloride.	Full App.	RAD 226/228						Residual Chlorine				
Ma Dies	NOW 447	-	-	DATE	TIME	DATE	TIME	-	-	-	-	1	Ž.	Ž :	žÖ	L			_	-	_	1			2	Pace	-	o./ Lab I.D.	-
1	HGWC-117	v	TG	8/19/21	18:28	-		21	5	2	3	-	+	+	+		X	X	X X	+		+	-	-			pH = 6,	04	
3		-	+	-				-	-	-	++	+	+	+	+	-	-	-	+	+	+	+		-	HH	Last sa	mple	-	-
4			+	-	_			-	-	-	-	+	\forall	+	+	-	H	+	+	+	-	+	-	-	H				
5		-	-					-	-	-	+	+	++	+	+	1	-	-	+	+	+	+		-	HH				-
6			+-					-	-	+	++	+	H	+	+	1	-	1	+	+	+	+	+	-	HH	T,I			-
7			+					-	-	1	1	+	11	+	+	1			十	+	\vdash	1			+++		9/2021		_
8									-				+	#	#	1			+	1					\Box		3/21/2		****
9			T				1			-	T	1	\Box	1	1			H	1	1			910		Π				
10										T		T	\prod	1	T]			T	T			4						
11											П	I		1	I					L									
12				-							Ц		П							L	at macrotrage	-			Ш		DOWN THE PROPERTY OF THE PARTY		700
	ADDITIONAL COMMENTS			ISHED BY			DATE	-	1	TIME			The State of	ACC	EPTE	DBY	/AF	FILIA	TION		1	TE	TIMIT			SAMP	LE CONDITI	ONS	
		Ther	19 /	hustin	- Me	EJ	8/20	14	117	215	> 1	4	A-	h	1:16	A~	,/	Par	L		1/4/	les	Take	,					
		Ryan	W	hussin	PAO		8/00/	21	13	36		1	111	10	- 6	10	8	7			9/10	14	lake 134	0	4.4	Y	10	Y	
					1		11	-	1	J.,				-							in		-					-	
								-	1		1	-	-	_	-	-									-				
	- 11- Set 1-5-		_		SAMPLE	R NAME	AND SIGN	ATI	JRE	and speak	-	none.	ACKAPITE	204	-	-	-	Nation	and the same of	DOTES NO.	-	-		-	-	¢	5	7	-
				1	weekee	- December	e of SAMP	10000	THE REAL PROPERTY.	4	un.	NONE PER CONTRACTOR		1		7	-	-			MOUNTS	downer			Temp in "C	(ccarred on	Custody ealed Cooler (Y/N)	amples Intact (Y/N)	

October 01, 2021

Joju Abraham Georgia Power-CCR 2480 Maner Road Atlanta, GA 30339

RE: Project: HAMMOND AP-4 RADS

Pace Project No.: 92555497

Dear Joju Abraham:

Enclosed are the analytical results for sample(s) received by the laboratory between August 13, 2021 and August 20, 2021. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Greensburg

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Nicole D'Oleo

nicole.d'oleo@pacelabs.com

Micole D'oler

(704)875-9092

Project Manager

Enclosures

cc: Christine Hug, Geosyntec Consultants, Inc.

Kristen Jurinko

Thomas Kessler, Geosyntec

Whitney Law, Geosyntec Consultants

Noelia Muskus, Geosyntec Consultants Ms. Lauren Petty, Southern Company

Nardos Tilahun, GeoSyntec

Nardos mandin, Geosyntec

Dawit Yifru, Geosyntec Consultants, Inc.

CERTIFICATIONS

Project: HAMMOND AP-4 RADS

Pace Project No.: 92555497

Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417

Alabama Certification #: 41590 Arizona Certification #: AZ0734 Arkansas Certification

California Certification #: 04222CA Colorado Certification #: PA01547

Connecticut Certification #: PH-0694

Delaware Certification EPA Region 4 DW Rad

Florida/TNI Certification #: E87683 Georgia Certification #: C040 Florida: Cert E871149 SEKS WET

Guam Certification Hawaii Certification Idaho Certification Illinois Certification Indiana Certification Iowa Certification #: 391

Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221

Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: 2017020 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Missouri Certification #: 235
Montana Certification #: Cert0082
Nebraska Certification #: NE-OS-29-14
Nevada Certification #: PA014572018-1

New Hampshire/TNI Certification #: 297617

New Jersey/TNI Certification #: PA051 New Mexico Certification #: PA01457 New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249

Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

South Dakota Certification
Tennessee Certification #: 02867

Texas/TNI Certification #: T104704188-17-3 Utah/TNI Certification #: PA014572017-9 USDA Soil Permit #: P330-17-00091 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 9526 Washington Certification #: C868 West Virginia DEP Certification #: 143 West Virginia DHHR Certification #: 9964C

Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L

SAMPLE SUMMARY

Project: HAMMOND AP-4 RADS

Pace Project No.: 92555497

Lab ID	Sample ID	Matrix	Date Collected	Date Received
92555497001	HGWA-47	Water	08/12/21 11:08	08/13/21 14:55
92555497002	HGWA-48D	Water	08/12/21 11:30	08/13/21 14:55
92555497003	HGWA-111	Water	08/12/21 13:15	08/13/21 14:55
92555497004	HGWA-112	Water	08/12/21 12:55	08/13/21 14:55
92555497005	HGWA-113	Water	08/12/21 15:08	08/13/21 14:55
92555497006	HGWC-117A	Water	08/12/21 17:57	08/13/21 14:55
92555497007	HGWC-102	Water	08/13/21 17:15	08/16/21 13:25
92555497008	HGWC-105	Water	08/13/21 15:35	08/16/21 13:25
92555497009	HGWC-107	Water	08/13/21 14:10	08/16/21 13:25
92555497010	HGWC-109	Water	08/13/21 12:00	08/16/21 13:25
92555497011	HGWC-118	Water	08/13/21 14:18	08/16/21 13:25
92555497012	DUP-4	Water	08/13/21 00:00	08/16/21 13:25
92555497013	HGWC-101	Water	08/16/21 12:50	08/17/21 11:25
92555497014	HGWC-103	Water	08/16/21 10:50	08/17/21 11:25
92555497015	FB-4	Water	08/16/21 11:30	08/17/21 11:25
92555497016	EB-4	Water	08/16/21 11:30	08/17/21 11:25
92555497017	HGWC-117	Water	08/19/21 18:28	08/20/21 12:15

SAMPLE ANALYTE COUNT

Project: HAMMOND AP-4 RADS

Pace Project No.: 92555497

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
92555497001	HGWA-47	EPA 9315	CLA	1	PASI-PA
		EPA 9320	JC2	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92555497002	HGWA-48D	EPA 9315	CLA	1	PASI-PA
		EPA 9320	JC2	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92555497003	HGWA-111	EPA 9315	CLA	1	PASI-PA
		EPA 9320	JC2	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
2555497004	HGWA-112	EPA 9315	CLA	1	PASI-PA
		EPA 9320	JC2	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92555497005	HGWA-113	EPA 9315	CLA	1	PASI-PA
		EPA 9320	JC2	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
2555497006	HGWC-117A	EPA 9315	CLA	1	PASI-PA
		EPA 9320	JC2	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
2555497007	HGWC-102	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
2555497008	HGWC-105	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
2555497009	HGWC-107	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
2555497010	HGWC-109	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
2555497011	HGWC-118	EPA 9315	LAL	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
2555497012	DUP-4	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JC2	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
	HGWC-101	EPA 9315	LAL		PASI-PA

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

SAMPLE ANALYTE COUNT

Project: HAMMOND AP-4 RADS

Pace Project No.: 92555497

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		EPA 9320		1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92555497014	HGWC-103	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JC2	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92555497015	FB-4	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JC2	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92555497016	EB-4	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JC2	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
92555497017	HGWC-117	EPA 9315	LAL	1	PASI-PA
		EPA 9320	JC2	1	PASI-PA
		Total Radium Calculation	RMK	1	PASI-PA

PASI-PA = Pace Analytical Services - Greensburg

Project: HAMMOND AP-4 RADS

Pace Project No.: 92555497

Lab Sample ID Method	Client Sample ID Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
92555497001	HGWA-47					
EPA 9315	Radium-226	0.0277 ± 0.104	pCi/L		09/17/21 07:26	
EPA 9320	Radium-228	(0.268) C:71% T:NA 0.434 ± 0.368 (0.735)	pCi/L		09/03/21 14:24	
Total Radium Calculation	Total Radium	C:70% T:90% 0.462 ± 0.472 (1.00)	pCi/L		09/17/21 16:27	
92555497002	HGWA-48D					
EPA 9315	Radium-226	0.194 ± 0.151 (0.260)	pCi/L		09/17/21 07:26	
EPA 9320	Radium-228	C:91% T:NA 0.0801 ± 0.367 (0.840) C:67%	pCi/L		09/03/21 14:24	
Total Radium Calculation	Total Radium	T:82% 0.274 ± 0.518 (1.10)	pCi/L		09/17/21 16:27	
92555497003	HGWA-111					
EPA 9315	Radium-226	0.0749 ± 0.137 (0.312)	pCi/L		09/17/21 07:26	
EPA 9320	Radium-228	C:78% T:NA 0.457 ± 0.418 (0.847) C:68%	pCi/L		09/03/21 14:24	
Total Radium Calculation	Total Radium	T:83% 0.532 ± 0.555 (1.16)	pCi/L		09/17/21 16:27	
92555497004	HGWA-112					
EPA 9315	Radium-226	0.0698 ± 0.160 (0.378) C:67% T:NA	pCi/L		09/16/21 14:16	
EPA 9320	Radium-228	0.153 ± 0.449 (1.00) C:69%	pCi/L		09/03/21 14:24	
Total Radium Calculation	Total Radium	T:89% 0.223 ± 0.609 (1.38)	pCi/L		09/17/21 16:27	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: HAMMOND AP-4 RADS

Pace Project No.: 92555497

Lab Sample ID	Client Sample ID				
Method	Parameters	Result	Units	Report Limit Analyzed	Qualifiers
92555497005	HGWA-113				
EPA 9315	Radium-226	-0.00761 ± 0.141 (0.384) C:69% T:NA	pCi/L	09/16/21 14:16	
EPA 9320	Radium-228	0.312 ± 0.433 (0.930) C:66% T:95%	pCi/L	09/03/21 14:24	
Total Radium Calculation	Total Radium	0.312 ± 0.574 (1.31)	pCi/L	09/17/21 16:27	
92555497006	HGWC-117A				
EPA 9315	Radium-226	0.124 ± 0.187 (0.412) C:60% T:NA	pCi/L	09/16/21 15:50	
EPA 9320	Radium-228	-0.124 ± 0.301 (0.738) C:70% T:90%	pCi/L	09/03/21 14:24	
Total Radium Calculation	Total Radium	0.124 ± 0.488 (1.15)	pCi/L	09/17/21 16:27	
92555497007	HGWC-102				
EPA 9315	Radium-226	0.141 ± 0.152 (0.309) C:94% T:NA	pCi/L	09/20/21 07:01	
EPA 9320	Radium-228	0.687 ± 0.348 (0.582) C:72% T:85%	pCi/L	09/16/21 11:08	
Total Radium Calculation	Total Radium	0.828 ± 0.500 (0.891)	pCi/L	09/22/21 09:14	
92555497008	HGWC-105				
EPA 9315	Radium-226	0.0919 ± 0.125 (0.268) C:94% T:NA	pCi/L	09/20/21 07:01	
EPA 9320	Radium-228	0.421 ± 0.328 (0.643) C:67% T:98%	pCi/L	09/16/21 11:08	
Total Radium Calculation	Total Radium	0.513 ± 0.453 (0.911)	pCi/L	09/22/21 09:14	

Project: HAMMOND AP-4 RADS

Pace Project No.: 92555497

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
92555497009	HGWC-107					
EPA 9315	Radium-226	0.0526 ± 0.128 (0.304) C:89% T:NA	pCi/L	09/3	20/21 07:01	
EPA 9320	Radium-228	0.762 ± 0.421 (0.759) C:66% T:89%	pCi/L	09/	16/21 11:08	
Total Radium Calculation	Total Radium	0.815 ± 0.549 (1.06)	pCi/L	09/	22/21 09:14	
2555497010	HGWC-109					
EPA 9315	Radium-226	0.0372 ± 0.110 (0.269) C:92% T:NA	pCi/L	09/	20/21 07:01	
EPA 9320	Radium-228	0.757 ± 0.444 (0.819) C:65% T:86%	pCi/L	09/	16/21 11:08	
Total Radium Calculation	Total Radium	0.794 ± 0.554 (1.09)	pCi/L	09/2	22/21 09:14	
92555497011	HGWC-118					
EPA 9315	Radium-226	-0.0605 ± 0.119 (0.354) C:91% T:NA	pCi/L	09/	20/21 07:01	
EPA 9320	Radium-228	0.228 ± 0.407 (0.890) C:68% T:84%	pCi/L	09/	16/21 11:09	
Total Radium Calculation	Total Radium	0.228 ± 0.526 (1.24)	pCi/L	09/2	22/21 09:14	
92555497012	DUP-4					
EPA 9315	Radium-226	0.159 ± 0.135 (0.243) C:93% T:NA	pCi/L	09/3	20/21 07:38	
EPA 9320	Radium-228	0.287 ± 0.474 (1.03) C:69% T:88%	pCi/L	09/	16/21 11:13	
Total Radium Calculation	Total Radium	0.446 ± 0.609 (1.27)	pCi/L	09/2	22/21 09:14	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: HAMMOND AP-4 RADS

Pace Project No.: 92555497

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
92555497013	HGWC-101					
EPA 9315	Radium-226	0.146 ± 0.134 (0.254)	pCi/L		09/20/21 07:38	
EPA 9320	Radium-228	C:96% T:NA 0.521 ± 0.456 (0.932) C:69%	pCi/L		09/16/21 11:13	
Total Radium Calculation	Total Radium	T:88% 0.667 ± 0.590 (1.19)	pCi/L		09/22/21 09:14	
92555497014	HGWC-103					
EPA 9315	Radium-226	0.224 ± 0.172 (0.318) C:96% T:NA	pCi/L		09/20/21 07:38	
EPA 9320	Radium-228	0.269 ± 0.459 (1.00) C:69% T:93%	pCi/L		09/16/21 11:13	
Total Radium Calculation	Total Radium	0.493 ± 0.631 (1.32)	pCi/L		09/22/21 09:14	
92555497015	FB-4					
EPA 9315	Radium-226	0.0770 ± 0.115 (0.251) C:97% T:NA	pCi/L		09/20/21 07:38	
EPA 9320	Radium-228	-0.166 ± 0.411 (0.978) C:70% T:87%	pCi/L		09/16/21 14:10	
Total Radium Calculation	Total Radium	0.0770 ± 0.526 (1.23)	pCi/L		09/22/21 09:14	
92555497016	EB-4					
EPA 9315	Radium-226	0.0588 ± 0.113 (0.259)	pCi/L		09/20/21 07:38	
EPA 9320	Radium-228	C:98% T:NA 0.484 ± 0.448 (0.917) C:68% T:85%	pCi/L		09/16/21 14:10	
Total Radium Calculation	Total Radium	0.543 ± 0.561 (1.18)	pCi/L		09/22/21 09:14	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: HAMMOND AP-4 RADS

Pace Project No.: 92555497

Lab Sample ID Method	Client Sample ID Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
92555497017	HGWC-117			<u> </u>		
EPA 9315	Radium-226	0.155 ± 0.183 (0.387) C:86% T:NA	pCi/L		09/20/21 07:38	
EPA 9320	Radium-228	-0.0327 ± 0.420 (0.974) C:71% T:86%	pCi/L		09/16/21 14:10	
Total Radium Calculation	Total Radium	0.155 ± 0.603 (1.36)	pCi/L		09/22/21 16:02	

Project: HAMMOND AP-4 RADS

Pace Project No.: 92555497

Sample: HGWA-47 PWS:	Lab ID: 9255 Site ID:	5497001 Collected: 08/12/21 11:08 Sample Type:	Received:	08/13/21 14:55 N	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.0277 ± 0.104 (0.268) C:71% T:NA	pCi/L	09/17/21 07:26	13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.434 ± 0.368 (0.735) C:70% T:90%	pCi/L	09/03/21 14:24	15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	$0.462 \pm 0.472 (1.00)$	pCi/L	09/17/21 16:27	7440-14-4	

Project: HAMMOND AP-4 RADS

Pace Project No.: 92555497

Sample: HGWA-48D PWS:	Lab ID: 9255 Site ID:	5497002 Collected: 08/12/21 11:30 Sample Type:	Received:	08/13/21 14:55	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.194 ± 0.151 (0.260) C:91% T:NA	pCi/L	09/17/21 07:26	3 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.0801 ± 0.367 (0.840) C:67% T:82%	pCi/L	09/03/21 14:24	1 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.274 ± 0.518 (1.10)	pCi/L	09/17/21 16:27	7 7440-14-4	

Project: HAMMOND AP-4 RADS

Pace Project No.: 92555497

Sample: HGWA-111 PWS:	Lab ID: 9255: Site ID:	5497003 Collected: 08/12/21 13:15 Sample Type:	Received:	08/13/21 14:55	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.0749 ± 0.137 (0.312) C:78% T:NA	pCi/L	09/17/21 07:26	13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.457 ± 0.418 (0.847) C:68% T:83%	pCi/L	09/03/21 14:24	15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.532 ± 0.555 (1.16)	pCi/L	09/17/21 16:27	7440-14-4	

Project: HAMMOND AP-4 RADS

Pace Project No.: 92555497

Sample: HGWA-112 PWS:	Lab ID: 9255 Site ID:	5497004 Collected: 08/12/21 12:55 Sample Type:	Received:	08/13/21 14:55	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.0698 ± 0.160 (0.378) C:67% T:NA	pCi/L	09/16/21 14:16	3 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.153 ± 0.449 (1.00) C:69% T:89%	pCi/L	09/03/21 14:24	15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.223 ± 0.609 (1.38)	pCi/L	09/17/21 16:27	7440-14-4	

Project: HAMMOND AP-4 RADS

Pace Project No.: 92555497

Sample: HGWA-113 PWS:	Lab ID: 9255 5 Site ID:	5497005 Collected: 08/12/21 15:08 Sample Type:	Received:	08/13/21 14:55 M	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	-0.00761 ± 0.141 (0.384) C:69% T:NA	pCi/L	09/16/21 14:16	13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.312 ± 0.433 (0.930) C:66% T:95%	pCi/L	09/03/21 14:24	15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.312 ± 0.574 (1.31)	pCi/L	09/17/21 16:27	7440-14-4	

Project: HAMMOND AP-4 RADS

Pace Project No.: 92555497

Sample: HGWC-117A PWS:	Lab ID: 9255: Site ID:	5497006 Collected: 08/12/21 17:57 Sample Type:	Received:	08/13/21 14:55 M	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.124 ± 0.187 (0.412) C:60% T:NA	pCi/L	09/16/21 15:50	13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	-0.124 ± 0.301 (0.738) C:70% T:90%	pCi/L	09/03/21 14:24	15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.124 ± 0.488 (1.15)	pCi/L	09/17/21 16:27	7440-14-4	

Project: HAMMOND AP-4 RADS

Pace Project No.: 92555497

Sample: HGWC-102 PWS:	Lab ID: 9255: Site ID:	5497007 Collected: 08/13/21 17:15 Sample Type:	Received:	08/16/21 13:25	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.141 ± 0.152 (0.309) C:94% T:NA	pCi/L	09/20/21 07:0	1 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.687 ± 0.348 (0.582) C:72% T:85%	pCi/L	09/16/21 11:08	3 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.828 ± 0.500 (0.891)	pCi/L	09/22/21 09:14	7440-14-4	

Project: HAMMOND AP-4 RADS

Pace Project No.: 92555497

Sample: HGWC-105 PWS:	Lab ID: 9255 Site ID:	5497008 Collected: 08/13/21 15:35 Sample Type:	Received:	08/16/21 13:25	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.0919 ± 0.125 (0.268) C:94% T:NA	pCi/L	09/20/21 07:01	13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.421 ± 0.328 (0.643) C:67% T:98%	pCi/L	09/16/21 11:08	3 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.513 ± 0.453 (0.911)	pCi/L	09/22/21 09:14	7440-14-4	

Project: HAMMOND AP-4 RADS

Pace Project No.: 92555497

Sample: HGWC-107 PWS:	Lab ID: 9255 Site ID:	5497009 Collected: 08/13/21 14:10 Sample Type:	Received:	08/16/21 13:25	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.0526 ± 0.128 (0.304) C:89% T:NA	pCi/L	09/20/21 07:01	1 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.762 ± 0.421 (0.759) C:66% T:89%	pCi/L	09/16/21 11:08	3 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.815 ± 0.549 (1.06)	pCi/L	09/22/21 09:14	4 7440-14-4	

Project: HAMMOND AP-4 RADS

Pace Project No.: 92555497

Sample: HGWC-109 PWS:	Lab ID: 9255: Site ID:	5497010 Collected: 08/13/21 12:00 Sample Type:	Received:	08/16/21 13:25	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.0372 ± 0.110 (0.269) C:92% T:NA	pCi/L	09/20/21 07:01	1 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.757 ± 0.444 (0.819) C:65% T:86%	pCi/L	09/16/21 11:08	3 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.794 ± 0.554 (1.09)	pCi/L	09/22/21 09:14	7440-14-4	

Project: HAMMOND AP-4 RADS

Pace Project No.: 92555497

Sample: HGWC-118 PWS:	Lab ID: 9255 Site ID:	5497011 Collected: 08/13/21 14:18 Sample Type:	Received:	08/16/21 13:25	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	-0.0605 ± 0.119 (0.354) C:91% T:NA	pCi/L	09/20/21 07:0	1 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.228 ± 0.407 (0.890) C:68% T:84%	pCi/L	09/16/21 11:09	15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.228 ± 0.526 (1.24)	pCi/L	09/22/21 09:14	7440-14-4	

Project: HAMMOND AP-4 RADS

Pace Project No.: 92555497

Sample: DUP-4 PWS:	Lab ID: 9255 Site ID:	5497012 Collected: 08/13/21 00:00 Sample Type:	Received:	08/16/21 13:25	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.159 ± 0.135 (0.243) C:93% T:NA	pCi/L	09/20/21 07:38	3 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.287 ± 0.474 (1.03) C:69% T:88%	pCi/L	09/16/21 11:13	3 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.446 ± 0.609 (1.27)	pCi/L	09/22/21 09:14	7440-14-4	

Project: HAMMOND AP-4 RADS

Pace Project No.: 92555497

Sample: HGWC-101 PWS:	Lab ID: 9255 Site ID:	5497013 Collected: 08/16/21 12:50 Sample Type:	Received:	08/17/21 11:25	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.146 ± 0.134 (0.254) C:96% T:NA	pCi/L	09/20/21 07:38	3 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.521 ± 0.456 (0.932) C:69% T:88%	pCi/L	09/16/21 11:13	3 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.667 ± 0.590 (1.19)	pCi/L	09/22/21 09:14	7440-14-4	

Project: HAMMOND AP-4 RADS

Pace Project No.: 92555497

Sample: HGWC-103 PWS:	Lab ID: 9255 Site ID:	5497014 Collected: 08/16/21 10:50 Sample Type:	Received:	08/17/21 11:25	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.224 ± 0.172 (0.318) C:96% T:NA	pCi/L	09/20/21 07:38	3 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.269 ± 0.459 (1.00) C:69% T:93%	pCi/L	09/16/21 11:13	15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.493 ± 0.631 (1.32)	pCi/L	09/22/21 09:14	7440-14-4	

Project: HAMMOND AP-4 RADS

Pace Project No.: 92555497

Sample: FB-4 PWS:	Lab ID: 9255 Site ID:	55497015 Collected: 08/16/21 11:30 Sample Type:	Received:	08/17/21 11:25	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.0770 ± 0.115 (0.251) C:97% T:NA	pCi/L	09/20/21 07:38	3 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	-0.166 ± 0.411 (0.978) C:70% T:87%	pCi/L	09/16/21 14:10	15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.0770 ± 0.526 (1.23)	pCi/L	09/22/21 09:14	7440-14-4	

Project: HAMMOND AP-4 RADS

Pace Project No.: 92555497

Sample: EB-4 PWS:	Lab ID: 9255 Site ID:	5497016 Collected: 08/16/21 11:30 Sample Type:	Received:	08/17/21 11:25	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.0588 ± 0.113 (0.259) C:98% T:NA	pCi/L	09/20/21 07:38	3 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.484 ± 0.448 (0.917) C:68% T:85%	pCi/L	09/16/21 14:10	15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.543 ± 0.561 (1.18)	pCi/L	09/22/21 09:14	4 7440-14-4	

Project: HAMMOND AP-4 RADS

Pace Project No.: 92555497

Sample: HGWC-117 PWS:	Lab ID: 9255 Site ID:	5497017 Collected: 08/19/21 18:28 Sample Type:	Received:	08/20/21 12:15	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.155 ± 0.183 (0.387) C:86% T:NA	pCi/L	09/20/21 07:38	3 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	-0.0327 ± 0.420 (0.974) C:71% T:86%	pCi/L	09/16/21 14:10	15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.155 ± 0.603 (1.36)	pCi/L	09/22/21 16:02	2 7440-14-4	

Project: HAMMOND AP-4 RADS

Pace Project No.: 92555497

QC Batch: 463426 Analysis Method: EPA 9315

QC Batch Method: EPA 9315 Analysis Description: 9315 Total Radium

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 92555497001, 92555497002, 92555497003, 92555497004, 92555497005, 92555497006

METHOD BLANK: 2237360 Matrix: Water

Associated Lab Samples: 92555497001, 92555497002, 92555497003, 92555497004, 92555497005, 92555497006

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-226
 0.250 ± 0.184 (0.307) C:77% T:NA
 pCi/L
 09/16/21 08:31

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: HAMMOND AP-4 RADS

Pace Project No.: 92555497

QC Batch: 463380 Analysis Method: EPA 9315

QC Batch Method: EPA 9315 Analysis Description: 9315 Total Radium

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 92555497012, 92555497013, 92555497014, 92555497015, 92555497016, 92555497017

METHOD BLANK: 2237271 Matrix: Water

Associated Lab Samples: 92555497012, 92555497013, 92555497014, 92555497015, 92555497016, 92555497017

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-226
 0.141 ± 0.135 (0.261) C:99% T:NA
 pCi/L
 09/20/21 07:37

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: HAMMOND AP-4 RADS

Pace Project No.: 92555497

QC Batch: 463379 Analysis Method: EPA 9320

QC Batch Method: EPA 9320 Analysis Description: 9320 Radium 228

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 92555497012, 92555497013, 92555497014, 92555497015, 92555497016, 92555497017

METHOD BLANK: 2237270 Matrix: Water

Associated Lab Samples: 92555497012, 92555497013, 92555497014, 92555497015, 92555497016, 92555497017

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.257 ± 0.278 (0.577) C:77% T:86%
 pCi/L
 09/16/21 11:10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: HAMMOND AP-4 RADS

Pace Project No.: 92555497

QC Batch: 461961 Analysis Method: EPA 9320

QC Batch Method: EPA 9320 Analysis Description: 9320 Radium 228

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 92555497001, 92555497002, 92555497003, 92555497004, 92555497005, 92555497006

METHOD BLANK: 2230398 Matrix: Water

Associated Lab Samples: 92555497001, 92555497002, 92555497003, 92555497004, 92555497005, 92555497006

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.353 ± 0.350 (0.718) C:73% T:86%
 pCi/L
 09/03/21 14:24

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: HAMMOND AP-4 RADS

Pace Project No.: 92555497

QC Batch Method:

QC Batch: 463377

EPA 9320

Analysis Description: 9320 Radium 228

EPA 9320

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 92555497007, 92555497008, 92555497009, 92555497010, 92555497011

METHOD BLANK: 2237266 Matrix: Water

Associated Lab Samples: 92555497007, 92555497008, 92555497009, 92555497010, 92555497011

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.209 ± 0.312 (0.674) C:74% T:86%
 pCi/L
 09/16/21 11:10

Analysis Method:

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: HAMMOND AP-4 RADS

Pace Project No.: 92555497

QC Batch: 463378 Analysis Method: EPA 9315

QC Batch Method: EPA 9315 Analysis Description: 9315 Total Radium

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 92555497007, 92555497008, 92555497009, 92555497010, 92555497011

METHOD BLANK: 2237267 Matrix: Water

Associated Lab Samples: 92555497007, 92555497008, 92555497009, 92555497010, 92555497011

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-226
 0.0874 ± 0.121 (0.260) C:97% T:NA
 pCi/L
 09/20/21 07:00

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: HAMMOND AP-4 RADS

Pace Project No.: 92555497

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Act - Activity

Date: 10/01/2021 09:32 AM

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval).

Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: HAMMOND AP-4 RADS

Pace Project No.: 92555497

Date: 10/01/2021 09:32 AM

₋ab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
2555497001	HGWA-47	EPA 9315	463426	_	
2555497002	HGWA-48D	EPA 9315	463426		
2555497003	HGWA-111	EPA 9315	463426		
2555497004	HGWA-112	EPA 9315	463426		
2555497005	HGWA-113	EPA 9315	463426		
2555497006	HGWC-117A	EPA 9315	463426		
2555497007	HGWC-102	EPA 9315	463378		
2555497008	HGWC-105	EPA 9315	463378		
2555497009	HGWC-107	EPA 9315	463378		
2555497010	HGWC-109	EPA 9315	463378		
2555497011	HGWC-118	EPA 9315	463378		
2555497012	DUP-4	EPA 9315	463380		
2555497013	HGWC-101	EPA 9315	463380		
2555497014	HGWC-103	EPA 9315	463380		
2555497015	FB-4	EPA 9315	463380		
2555497016	EB-4	EPA 9315	463380		
2555497017	HGWC-117	EPA 9315	463380		
2555497001	HGWA-47	EPA 9320	461961		
2555497002	HGWA-48D	EPA 9320	461961		
2555497003	HGWA-111	EPA 9320	461961		
2555497004	HGWA-112	EPA 9320	461961		
2555497005	HGWA-113	EPA 9320	461961		
2555497006	HGWC-117A	EPA 9320	461961		
2555497007	HGWC-102	EPA 9320	463377		
2555497008	HGWC-105	EPA 9320	463377		
2555497009	HGWC-107	EPA 9320	463377		
2555497010	HGWC-109	EPA 9320	463377		
2555497011	HGWC-118	EPA 9320	463377		
2555497012	DUP-4	EPA 9320	463379		
2555497013	HGWC-101	EPA 9320	463379		
2555497014	HGWC-103	EPA 9320	463379		
2555497015	FB-4	EPA 9320	463379		
2555497016	EB-4	EPA 9320	463379		
2555497017	HGWC-117	EPA 9320	463379		
2555497001	HGWA-47	Total Radium Calculation	464617		
2555497002	HGWA-48D	Total Radium Calculation	464617		
2555497003	HGWA-111	Total Radium Calculation	464617		
2555497004	HGWA-112	Total Radium Calculation	464617		
2555497005	HGWA-113	Total Radium Calculation	464617		
2555497006	HGWC-117A	Total Radium Calculation	464617		
2555497007	HGWC-102	Total Radium Calculation	464986		
2555497008	HGWC-105	Total Radium Calculation	464986		
2555497009	HGWC-107	Total Radium Calculation	464986		
2555497010	HGWC-109	Total Radium Calculation	464986		
2555497011	HGWC-118	Total Radium Calculation	464986		

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: HAMMOND AP-4 RADS

Pace Project No.: 92555497

Date: 10/01/2021 09:32 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
92555497012	DUP-4	Total Radium Calculation	464986		,
92555497013	HGWC-101	Total Radium Calculation	464986		
92555497014	HGWC-103	Total Radium Calculation	464986		
92555497015	FB-4	Total Radium Calculation	464986		
92555497016	EB-4	Total Radium Calculation	464986		
92555497017	HGWC-117	Total Radium Calculation	465155		

Pace Analytical

Document Name:

Sample Condition Upon Receipt(\$CUR)

Document No.: F-CAR-CS-033-Rev.07 Document Revised: October 28, 2020 Page 1 of 2

Issuing Authority:
Pace Carolinas Quality Office

Page 37 of 51

Laboratory receiving samples: Asheville Eden Greenwood Huntersville Raleigh Mechanicsville Atlanta Kernersville WO#: 92555497 Sample Condition Client Name: Project #: **Upon Receipt** Client Courier: Commercial Other **Custody Seal Present?** Yes MO Seals Intact? Yes No Date/Initials Person Examining Contents: 8132 How Packing Material: Bubble Wrap None Othe **Biological Tissue Frozen?** ☐Yes ☐Ado ☐N/A Thermometer: Wet Blue None DAGUN ID: Type of Ice: Correction Factor: Cooler Temp: Add/Subtract (°C) Temp should be above freezing to 6°C Samples out of temp criteria. Samples on ice, cooling process Cooler Temp Corrected (°C): has begun USDA Regulated Soil (AFA, water sample) Did samples originate in a quarantine zone within the United States: CA, NY, or SC (check mags) Did samples originate from a foreign source (internationally, including Hawaii and Puerto Rico)? Yes Yes 4 TVO Comments/Discrepancy: Chain of Custody Present? □No □N/A Samples Arrived within Hold Time? □No □N/A Short Hold Time Analysis (<72 hr.)? Que TYes □N/A Rush Turn Around Time Requested? Yes □N/A 4 Dyes Suffic ent Volume? □No □N/A Correct Containers Used? Dies □No □N/A -Pace Containers Used? No Tyes □N/A Tres Containers Intact? No □N/A Dissolved analysis: Samples Field Filtered? Yes □No CIN/A 8 Sample Labels Match COC? CYC. **□**No □N/A -Includes Date/Time/ID/Analysis Matrix: Headspace in VOA Vials (>5-6mm)? Yes No Trip B ank Present? Yes No PIN/A Trip B ank Custody Seals Present? Yes □ No Z NA COMMENTS/SAMPLE DISCREPANCY Field Data Required? Yes No Lot ID of split containers: CLIENT NOTIFICATION/RESOLUTION Date/Time: Person contacted: Project Manager SCURF Review: Date: Project Manager SRF Review: Date:

Document Name: Sample Condition Upon Receipt(SCUR)

Document No.: F-CAR-CS-033-Rev.07 Document Revised: October 28, 2020 Page 2 of 2

> Issuing Authority: Pace Carolinas Quality Office

*Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation samples.

Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC, LLHg

**Bottom half of box is to list number of bottles

Project # [山〇世: 9255

PM: NMG

Due Date: 09/03/21

CLIENT: GA-GA Power

V/GK (3 vials per kit)-VPH/Gas kit (N/A) SP5T-125 ml. Sterile Plastic (N/A - lab) SP2T-250 ml. Sterile Plastic (N/A - lab)	SP21-250 mL Sterile Plastic (N/A – lab) SP34-250 mL Plastic (NH2)2504 (9.3-9.7)	AGOU-100 mL Amber Unpreserved vials (N/A) VSGU-20 mL Scintillation vials (N/A) DG9U-40 mL Amber Unpreserved vials (N/A)
	X	
	8	
	X	
	2	
	X	
	8	
	1	
Amount of Preser added		Lot #
A		mount of Preservative added

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers.

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Gustody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Required Deep Information Required R	Section		Section I	В							Far	tion 6														p		-	-	Transfer emission		Pag
Address: Allanta GA Comy To: Geosyntec Contacts Address: Allanta GA Comy To: Geosyntec Contacts Address: Allanta GA Comy To: Geosyntec Contacts Address: Allanta GA Comy To: Geosyntec Contacts Address: Allanta GA -	and the second s					Contract of the sales							on.												Pa	ge:	1		oī 1			
Second Company Name Company Na			Report To	SC	S Co	ntacts			A STATE OF THE PARTY OF THE PAR	Name of Street	Attor	flon.	S	outh	ern C	0	-					7				l.			-	1	-	***************************************
Purple P	Address	Atlanta, GA	Copy Ter	Geo	synt	ec Contac	cts			-	Com	yneq	Name			_	-	-			_	R	FGU	BATO	RY	AGENC	v	-				
Part Part						1					Andr	ess.		_		_	-	-		-		-	ALL PROPERTY AND ADDRESS OF THE PERSON NAMED IN COLUMN 1					IA/AT/		C. C. C. C. C. C. C. C. C. C. C. C. C. C		
Section D	Email To	SCS Contacts	Purchase (Order	Na.					_	Pace	Chinte	_				-	-	-	_	-	-						VVA 15				
Project Number Proj	Phone.	Fae	Project Na	une.	Her	nmond A	P-4						- W	and a	11		_		-			1	١.	JST		RCR	A	***	10	OTHE	R	TO AND INTO MAKE
Section D	Request	ed Due Date/TAT: 10 Day		Citize and a second							Matte	901				ng					_		ite t	.ocatio	m	G	ā					
Name		THE STATE OF THE S									Page	1-10100	" 10	1839	-			Y-				L		STATE	E:			-				
Name	-	Section D Vallet Matrix	Cada	Time-	-	-	-	-		Trans.	T-	T	-	of the last of the	WE-		-	-	R	que	este	d An	alys	is Filt	ere	d (Y/N)	1					
SAMPLE ID SAMPLE ID SAMPL		Required Chart Information MAIRIX		15th	MP)		COLL	ECTED		1			pr	rase	ratio	ac.	-	2		-1			1									
SAMPLE ID SAMPLE D SAMPL				19. H	00		*****	COMPOS	16	Z		T	T	M	T	T-	T		-	1	=	+	+	-	-	++	+	2000			BBMAN.	
SAMPLE ID MORE MAN ARE CATE TIME LATE		YOU	op Di	4 1 2	COMPOR	ate.		-	CHC	1	Н						_ [516	(0)		1	1				11						
SAMPLE ID MORE MAN ARE CATE TIME LATE	CIL.		20	SRA					13	1	Ш				16		1	Sul	62	0.5	18	1		1		11	Z					
HGWA-47 WT G 8/12/21 11:08 21 5 2 3 V X X X X X X X X X X X X X X X X X X		AIR	MB		15		1	40	1		88					10				Las					1			0				
HGWA-47 WT G e/12/21 11:08 21 5 2 3 V V X X X X X X X X X X X X X X X X X		(A-Z, D-9 (,-) DTHER	OT	300	W.		1			PA	N N			11	1		ll	1	non		I	55				11		OLI				
HGWA-47 WT G e/12/21 11:08 21 5 2 3 V V X X X X X X X X X X X X X X X X X	~			000						TEN	E	SNe				-		5	u_ i	As	b. L	3/22	1				11	5				
1 HGWA-47 WT G 6/12/21 11:08 21 5 2 3	×			R	PLE		1					88	0 2		T	ano	-	aly	nide	LL.	74	223			1	11	11	luai				
1 HGWA-47 WT G 8/12/21 11:08 21 5 2 3 X X X X X X X X X X PH = 7.38 2 HGWA-48D WT G 8/12/21 11:30 22 5 2 3 X X X X X X X X X PH = 7.44 3 HGWA-111 WT G 8/12/21 13:15 24 5 2 3 X X X X X X X X X PH = 7.44 4 HGWA-112 WT G 8/12/21 12:55 21 5 2 3 X X X X X X X PH = 6.67 5 HGWA-113 WT G 8/12/21 15:08 27 5 2 3 X X X X X X X PH = 6.08 6 HGWC-117A WT G 8/12/21 17:57 23 5 2 3 X X X X X X X PH = 6.27	E			M	SAM	DATE	TIME	DATE	TIME	SAM	10	dun	ST N	호	VaO	Age to	美	An	SH	Ö	0	TOS TOS	3	11		11	1	esid			S. 17.	
2 HGWA-48D WT G 8/12/21 11:30 22 5 2 3 X X X X X X X PH = 7.44 3 HGWA-111 WT G 8/12/21 13:15 24 5 2 3 X X X X X X X X PH = 6.67 4 HGWA-112 WT G 8/12/21 12:55 21 5 2 3 X X X X X X X X PH = 5.50 5 HGWA-113 WT G 8/12/21 15:08 27 5 2 3 X X X X X X X PH = 6.08 6 HGWC-117A WT G 8/12/21 17:57 23 5 2 3 X X X X X X X X PH = 6.27	1	HGWA-47	SALE DE CONTRACTOR DE CONTRACT	WT	The same	1000	-	Part Commission		-	-	7	-	1	-	0.0	H	-	-	-	and the same	-	-	++	+	-	+	CC	Pace	International actions	- THE PERSON NAMED IN	ab I.D.
3 HGWA-111 WT G B/12/21 13:15 24 5 2 3 X X X X X X PH = 6.67 4 HGWA-112 WT G B/12/21 12:55 21 5 2 3 X X X X X X X PH = 5.50 5 HGWA-113 WT G B/12/21 15:05 27 5 2 3 X X X X X X X PH = 6.08 6 HGWC-117A WT G B/12/21 17:57 23 5 2 3 X X X X X X X PH = 6.27	2	HGWA-48D		WT	G	8/12/21	11:30	-		-	Technology	Marine Na	-		+	+-	H	1	-	-	-	americana.	70	++	+	++	1-1	+				
4 HGWA-112 W1 8 8/12/21 12.55 21 5 2 3 X X X X X X X X X X X X X X X X X X	3	HGWA-111		WT	G					1	-	-	-	1	-	+	-		-	-	-	-	-	++	+		+-		-			
5 HGWA-113 WT G 8/12/21 15:08 27 5 Z 3 X	4	HGWA-112	-	WI	G		1		-	1	-	-	THE PERSON		+	+	Н	-	-	and a	armin .	-	-	\vdash	+	++	$\perp \perp$	-	-			
B HGWC-117A WT G 8/12/21 17.57 23 5 2 3 X	5	HGWA-113		-	G			-	-	-	-	-	-	H	+	+	H		-	-	+	_	-	11	+	+	+	1		pH =	5.50	
7 PH = 6.27	6	HGWC-117A			-	-	1			1-	-	++	Asimirania	+-	+	+	Н	- 5	-	manufact	-	-	-	++	4	+	\sqcup	\rightarrow		pH=	6.08	
	7				-	0/12/21	17.57			23	5	12	13	\vdash	+	+	Н	1	X	7	XX	X	-	11	1	11		1		pH=	6.27	
	8			_	-					-	-	-	-	1	+	4		1	1	_	1	_	1		1		11	1				
		The state of the s		-		_	-				-	-	-	H	+	+	Н	1	4	4	4	1	1		1	11	11	1				
10	10			-						=	-	+	-		_	-	-		-	+	1	-	\perp	11	1	11	1	1				
TI TJ	11									-	-	-	-	H	+	-	H	7	+	+	+	-	4	\perp	+		+	+				
12 8/12/2021	12								-	-	-	+	+	+	+	+-	H	1	+	+	+	+	+		Ŧ	7	\forall	+		8/12/2	2021	
ADDITIONAL COMMENTS RELINQUISHED BY AFFILIATION DATE TIME ACCEPTED BY AFFILIATION DAYE TIME SAMPLE CONDITIONS				RELI	NQUI	SHED BY /	AFFILIATI	ON	DATE	-	7	IME	+			CCEP	TED	BY	AFF	LIAT	ION		-	DATE		71145	-		- A 54.0	L C CONOL	Maur	- Comment of the Comm
Please note dry walls, strike thorough any wells not sampled	lease n	ote dry wells, strike therough any wells not sampled		*******	-	The second second	Dobble Continuence	-	CIN	-			-	_	-	-		-	-		1014		-	-	+	-	-		SAME	LE CONOI	TONS	
		to the sample for the event has good fazen.	1 4					0					15	-00	or	- 4	0	in	- +			-	18	(13/21	-		1_					
Comme Coin / Gra 8/3/21 1455 Rum Villiam / Pace 1/18/21 1456	-		Cons	-	4	sin /	900		8/3/2	1	145	5	1	un	_	V.1	10	men	1	PA	u		14	18/21	1	1455	1					
Very William / Pres Start W.C.			Rya	n 1	Nil	ioms	Pace		8/13/2					0	11	11	311	1	I.	1	1	00	1	1,6	1	11-5	1				1	
193134 1650 J. Mengrafille 8/18/21/1056						1			11.4.				V	-	12		2	7	1	10	631	Te-	1	144	1	1000	-	+			-	-
SAMPLER NAME AND SIGNATURE							SAMPLE	R NAME	AND SIGN	ATII	RF.	***************************************	4	-	-	Desired	-	-untowe-	4				1	-	1	-	-					**
PRINT Non-ACAMPUAN							-		-	-	-		********		Address		-				_	in the same of the			*****			1	(X)	900%		inte
PRINT Name of SAMPLER: Thomas Neesly, Ashly Ramsky, Conney of the Sampler of SAMPLER: Thomas Neesly, Ashly Ramsky, Conney of the Sampler of SAMPLER: Thomas Neesly, Ashly Ramsky, Conney of the Sampler of Sample												om	45	Mx	33	41	1	15	11	4	44	ms	4.4	Co	221	nev	III DEL		S S	Hed C	1	Seks N. S.
Important Note: By Algebra this farm you are accepting Pace's NET 30 day payment farms and accepting Pace's NET 30		'important store Du second on face						SIGNATUR	E of SAMP	LER:	T	2	8	2)	8	0	9		IMA	I/DD	gner /YY);	8	5/1:	2/2	04	1	7		E =	563		Samples intect (YIN)

Pace Analytical

Document Name: Sample Condition Upon Receipt(SCUR)

Document No.: F-CAR-CS-033-Rev.07

Document Revised: October 28, 2020 Page 1 of 2 Issuing Authority: Pace Carolinas Quality Office

Laboratory receiving samples: Asheville	Huntersville	e 🗌 Raleig	h M	echanicsville Atlanta Kernersville
Sample Condition Client Name: Upon Receipt	Power		Project #:	
Courier: Fed Ex UP		□ Cli	ent	PM: NMG Due Date: 09/03/21 CLIENT: GA-GA Power
Custody Seal Present? Yes TNo Se	eals Intact?	Yes No		Date/Initials Person Examining Contents: 2142 KP
Packing Material: Bubble Wrap Thermometer: HR Gun ID: THE 230 Cooler Temp: 4.3/54 Add/Subtraction Factorials	Type of Ice:	None O	Siue 🗌	Biological Tissue Frozen? Yes No No N/A None The should be above freezing to 6°C
	United States: CA, NY	, or SC (check ma	nos)? Did	Samples out of temp criteria. Samples on ice, cooling process has begun samples originate from a foreign source (internationally, uding Hawaii and Puerto Rico)? Yes No
				Comments/Discrepancy:
Chain of Custody Present?	☐¥es □	No DN/A	1	(a
Samples Arrived within Hold Time?	Byes [No ON/A	2.	
Short Hold Time Analysis (<72 hr.)?	☐Yes ☐	N/A	3.	
Rush Turn Around Time Requested?	□Yes Œ	No □N/A	4.	
Sufficient Volume?	CHYE'S [No □N/A	5	
Correct Containers Used?	☐¥es □]No □N/A	6.	
-Pace Containers Used?	☐Yes ☐	No □N/A	-	nies.
Containers Intact?	☐¥es □]No □N/A	7.	
Dissolved analysis: Samples Field Filtered?	□Yes □	No ONA	8.	
Sample Labels Match COC?	(Dves []No □N/A	9.	
-Includes Date/Time/ID/Analysis Matrix:	W			
Headspace in VOA Vials (>5-6mm)?		No CINA	10.	
Trip Blank Present?			1 22	
Trip Blank Custody Seals Present? COMMENTS/SAMPLE DISCREPANCY		No Playa		Field Data Required? Yes No
			Lot ID	of split containers:
CLIENT NOTIFICATION/RESOLUTION				
Person contacted:		Date/T	ime:	
Project Manager SCURF Review:				Date:
Project Manager SRF Review:				Date:

Face Analytical

Document Name: Sample Condition Upon Receipt(SCUR) Document No.:

Document No.: F-CAR-CS-033-Rev.07 Document Revised: October 28, 2020 Page 2 of 2

Issuing Authority:
Pace Carolinas Quality Office

*Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation samples.

Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC, LLHg

**Bottom half of box is to list number of bottles

MO#: 92555497

PM: NMG

Project #

Due Date: 09/03/21

CLIENT: GA-GA Power

ltem#	BP4U-125 mL Plastic Unpreserved (N/A) (CI-)	BP3U-250 mL Plastic Unpreserved (N/A)	BP2U-500 mL Plastic Unpreserved (N/A)	8P1U-1 liter Plastic Unpreserved (N/A)	BP4S-125 mL Plastic H2SO4 (pH < 2) (CI·)	BP3N-250 mL plastic HNO3 (pH < 2)	BP4Z-125 mL Plastic ZN Acetate & NaOH (>9)	BP4C-125 mL Plastic NaOH (pH > 12) (Cl-)	WGFU-Wide-mouthed Glass jar Unpreserved	AG1U-1 liter Amber Unpreserved (N/A) (CI-)	AG1H-1 liter Amber HCl (pH < 2)	AG3U-250 mL Amber Unpreserved (N/A) (Cl-)	AG15-1 liter Amber H2SO4 (pH < 2)	AG3S-250 mL Amber H2SO4 (pH < 2)	AG3A[DG3A]-250 mL Amber NH4Cl (N/A)(Cl-)	DG9H-40 mL VOA HCI (N/A)	VG9T-40 mL VOA Na25203 (N/A)	VG9U-40 mL VOA Unp (N/A)	DG9P-40 mL VOA H3PO4 (N/A)	VOAK (6 vials per kit)-5035 kit (N/A)	V/GK (3 vials per kit)-VPH/Gas kit (N/A)	SPST-125 mL Sterile Plastic (N/A – lab)	SP2T-250 mL Sterile Plastic (N/A - lab)	BPIN	BP3A-250 mL Plastic (NH2)2504 (9.3-9.7)	AGOU-100 mL Amber Unpreserved vials (N/A)	VSGU-20 mL Scintillation vials (N/A)	DG9U-40 mL Amber Unpreserved vials (N/A)
1	1	1	1		1	1	1	1			1		1	1	1									3	\supset			
2	1	1			1	Kr	X	1			1		1	1	1									8	7			
3	1	1			1	X	1	1			1		1	1	1									3	7			
4	1				1	Y	1	1			1		1	1	1									Z	1			
5	1	1	1		1	No	1	1			1		1	1	1									X	7			
.6	1		İ		1	N.	X	1			1		X	X	X									X	7			
7	1				1	1	/	/			1		1	1	1									1	1			
8	/				1	/	1	/			1		1	1	1									1	1			
9	1			-	1	1	1	/	-		1		1	1	1	1								1	1			
10	1			+	1	1	1	/			1		1	1	1									1	1			
11	/		-	-	1	1	/	/			1		1	1	1									1	1			
12	1				1	1	/	1			X		X	1	1									1	V			

		pH Ac	justment Log for Pres	erved Samples		
Sample ID	Type of Preservative	pH upon receipt	Date preservation adjusted	Time preservation adjusted	Amount of Preservative added	Lot #
		10.00				
				1991	201	

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers.

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

dene	d Client Information.	Section B Required P	roject	Intorn	nation.	I				Secti	350	mations												Pa	age:	1	,	or 1	
mpan	v: GA Power	Report To:	scs	Con	tacts	dale				Allent	ion:	Sod	110	r Co		-		-	-	٦				- Seena	-				a special section of
dress	Atlanta, GA	Сору То.	Geos	ynte	c Contact	\$				Comp	any N	ame.					7				REGL	LATOR	YA	GENC	Y				
										Addre	55		1								- 1	IPDES	F	GRO	UNE	WATE	EIT	DRINKING	WATER
nail To	SCS Contacts	Purchase C	itder A	la.:				-		Pace C Rafere			1							┪	- 1	JST	T	RCR	A		10	OTHER CO	CR_
ana	Fax	Project Nan	ne:	Ham	mond AP	4				Pace F Menag	roject	Kev	in -	terrin	g		-	-		7	Site	Location		_					
ques	ted Due Date/TAT: 18 Day	Project Nur	nber:							Pace P		108	39	. 10		_	_			1		STATE:		G	Α	- [
	- Andrews - Andr												+					Reg	uest	ed A	naly	sis Filter	red (Y/N)		T			
	Section D Valid Matrix C Required Chert Information MATRIX	CODE	(0 H D)	C=COMP)		COLL	ECTED					Pres	erv	ative	5	10.12	2								I				
	DRIM SKEWATER WASTER WASTER PRODUCT	DW WT WW P	valid codes to [48]		сомрозп	E	COMPOSIT	E	ECTION							-	-									2			
TTEM#	SAMPLE ID SOLUSOLIO OIL WIPE AIR OTHER SAMPLE IDS MUST BE UNIQUE TISSUE	SL OL WP AR OT IS	MATRIX CODE (sarv	SAMPLE TYPE (G=GRAB	DATE	TIME	DATE	TIME	SAMPLE TEMP AT COLLECTION	# OF CONTAINERS	Unpreserved	H ₂ SO ₄	HCI	NaOH Na.S.O.	Methanol	Olher	Analysis lest	Full App. Ill and IV motals	226/228	ros						Residual Chlarine (Y/N)	Pace	Project No	o./ Lab LC
1	HGWC-102		WT	G	8/13/21	17:15			21	5	2	3					L	x x	×	X				П	T	Π		ρH = 5.4	45
2	HGWC-105		WT	G	8/13/21	15:35			20	5	2	3						ΧX	×	×						\prod		pH = 6.4	44
3	HGWC-107		WT	G	8/13/21	14:10			21	5	2	3				Ц	1	x x	X	X								pH = 6.1	11
4	HGWC-109		WT	G	8/13/21	12:00			23	5	2	3		-	1		12	x x	-	-	-	1	_	1	+	11		pH = 6.7	71
5	HGWC-118		WT	G	8/13/21	14:18			25	-	2	3	Н	+	-		- Pass	XX	o come	manne)	_		+	1	+	11		pH = 6.7	78
6	Dup-4		WT	G	8/13/21	0:00	-		20	5	2	3	Н	+	-	\vdash	-	X X	X	X	+	11	-	H	+	+			
8								-	-	-	+	-	Н	+	+	H	-	+	+-	Н	+	++	+	+	+	+	-		-
9			-			-	-				11	+			+	Н	-	-	+	Н	-	+	+	++	+	++	TJ		
10								1				-	=	-	#	口	1		1	Н	-	11	+	\Box	+	+	8/1	3/2021	
11									Т				П			П	1				-	++	丰	H	1				
12																													
	ADDITIONAL COMMENTS		RELI	NOU	SHED BY	AFFILIAT	ION	DATE		1	IME			А	CCEP	TED	BYII	AFFIL	LATIO	N		DATE	T	TIME			SAME	LE CONDITIO	SMC
	note dry wells, strike thorough any wells not sampled in when the last namede for the event hare been taken.	Co	nne	_	Conin	1GE	0	8/16	101	13:	25	12	49	*	Wi	1110	1	. 7	PAL	2	1	7/16/21	1	326					
		12.	~	N	Coin Ilin-	· /p,	14	8/16	11	15	38			11	101	10	1	51	P	1/4	0	2/1/12	1/	52					
			-	-		7.		114	1.1	-		X	1	20	00	0		7	Lis.	4	-16	fresc	44	مصد	+				

Document Name: Sample Condition Upon Receipt(SCUR)

Document No.: F-CAR-CS-033-Rev.07

Document Revised: October 28, 2020

Page 1 of 2

Issuing Authority:
Pace Carolinas Quality Office

Laboratory receiving samples: Asheville Eden Greenwood	Huntersville Raleig	h Mechanicsville Atlanta Kernersville
Sample Condition Client Name:	NCV USPS Cli Other: htact? Yes No le Bags None D Type of Ice:	Project #: WO#:92555497 PM: NMG
USDA Regulated Soil (N/A, water sample) Did samples originate in a quarantine zone within the United Yes No		ps)? Did samples originate from a foreign source (internationally, including Hawaii and Puerto Rico)? Yes No. Comments/Discrepancy:
Chain of Custody Present?	Yes No N/A	1
Samples Arrived within Hold Time?	C□Yes □No □N/A	2.
Short Hold Time Analysis (<72 hr.)?	TYES CANO DN/A	3.
Rush Turn Around Time Requested?	□Yes □NO □N/A	4. 10 Day
Sufficient Volume?	Gres ONO ON/A	5
	Gres ONO ON/A	6.
Correct Containers Used? -Pace Containers Used?	Tyes ONO ON/A	
10 to 10 to		7.
Containers Intact?		3.
Dissolved analysis: Samples Field Filtered?	Yes No NA	g
Sample Labels Match COC? -Includes Date/Time/ID/Analysis Matrix:	V	
Headspace in VOA Vials (>5-6mm)?	DYES DNO PN/A	10.
Trip Blank Present?	□Yes □No □NHA	11.
Trip Blank Custody Seals Present?	DYES DNO GATA	
COMMENTS/SAMPLE DISCREPANCY		Field Data Required? ☐Yes ☐No
CLIENT NOTIFICATION/RESOLUTION	5	Lot ID of split containers:
	and the second s	
Person contacted:	Date/1	me:
Project Manager SCURF Review: Project Manager SRF Review:		Date: Page 43 of 51

Document Name: Sample Condition Upon Receipt(SCUR)

Document No.: F-CAR-CS-033-Rev.07 Document Revised: October 2.8, 2020 Page 2 of 2

> Issuing Authority: Pace Carolinas Quality Office

*Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation samples.

Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC, LLHg

**Bottom half of box is to list number of bottles

Project WO#: 92555497

M: NMG

Due Date: 09/03/21

CLIENT: GA-GA Power

ltem#	BP4U-125 mL Plastic Unpreserved (N/A) (CI-)	BP3U-250 mL Plastic Unpreserved (N/A)	BP2U-500 mL Plastic Unpreserved (N/A)	BP1U-1 liter Plastic Unpreserved (N/A)	8P4S-125 mL Plastic H2SO4 (pH < 2) (Cl-)	BP3N-250 mL plastic HNO3 (pH < 2)	8P4Z-125 mL Plastic ZN Acetate & NaOH (>9)	BP4C-125 mL Plastic NaOH (pH > 12) (CI-)	WGFU-Wide-mouthed Glass jar Unpreserved	AG1U-1 liter Amber Unpreserved (N/A) {C -}	AG1H-1 liter Amber HCl (pH < 2)	AG3U-250 mL Amber Unpreserved (N/A) (CI-)	AG15-1 liter Amber H2SO4 (pH < 2)	AG35-250 mL Amber H2SO4 (pH < 2)	AG3A(DG3A)-250 mL Amber NH4Cl (N/A)(Cl-)	DG9H-40 mL VOA HCI (N/A)	VG9T-40 mL VOA Na2S2O3 (N/A)	VG9U-40 mL VOA Unp (N/A)	DG9P-40 mL VOA H3PO4 (N/A)	VOAK (6 vials per kit)-5035 kit (N/A)	V/GK (3 vials per kit)-VPH/Gas kit (N/A)	SP5T-125 mL Sterile Plastic (N/A - lab)	SPZT-250 mL Sterile Plastic (N/A - lab)	BPIN	BP3A-250 mL Plastic (NH2)2504 (9:3-9.7)	AGOU-100 mL Amber Unpreserved vials (N/A)	VSGU-20 mL Scintillation vials {N/A}	DG9U-40 mL Amber Unpreserved vials (N/A)
1	1	1	1		1	Y	1				1		1	1	1									2	1			
2	1	1			1	Y	1	/			1		1	1	1									X	1			
3	1	T	1		1	1/v	1	1			1		1	1	1									X	1			
4	1	1	1		1	K		1			1		1	1	1									D'	1			
S	1				1	1	1	1			1		1	1	1									1	1			
6	1				Z	1	1	1			1		1	1	1	74.00								1	1			
7	1				1	1	1	1			1		1	1	1									1	1			
8	1				1	1	1	/			1		1	1	1									1	1			
9	1				1	1	1	/			1		1	1	1									1	1			
10	1				1	1	1	/			1		1	1	1							The state of the s		1	1			
11	/				1	1	/	1			1		1	1	1									1	1			
12	1				1	1	1	1			1		1	1	1									1	1			

		ph Ac	ljustment Log for Pres			-
Sample ID	Type of Preservative	pH upon receipt	Date preservation adjusted	Time preservation adjusted	Amount of Preservative added	Lot N
				,		-

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers.

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT, All relevant fields must be completed accurately.

Section			Section								Sècti														Ī	Page:	1	- Ange	of	1		Page
Comban	d Client Information: Y: GA Pawer		Required Report To		-					_	Atlent	_	So	_	m Co).		_	_		7				1					-		
Address	Atlants, GA		Copy To:	Geo	synte	ec Contact	ts		*		Comp	any h	eme:	-	_	-	-		_	-	-	EGII	LATOR	V IS	CEN	cv	-		-	-		
			1	-		-				-	Addre	56:		-	-	-	-	-	-	-	F		PDES	1135		-	D WA	TEI	-	RINKING	CIMATE	- p
Email To	SCS Contact	\$	Purchase	Order	No.:			-	-	-	Patre C	atout		+	-	-	-	-	-		-						DAM			THER		.11
Phorie:	300 30.130.	IFax:				mond AP	2.4			_	Page P		Ko	unda L	terrin				_		-	_	ST	_	RU	RA		vinimani.		HER	numin:	Million.
100	ted Due Datr/TAT:	10 Day	Project N	41	, ital	intuitu Ar		-			Мерад	er.	10	1	iei iii	S				•	1		ocation STATE:	1	_	GA	-					
																			Requ	ește	d Ar	alys	s Filte	red	(Y/N)) .						
	Section D Required Clarif Informati	Valid Matrix MATRIX ORINGARAMATER	CODE	codes to left)	C=CCMP)		CĢLL	CTED					Pre	serv	ative	s	NIA															
,тем#	SAMPL (#-Z, 0-8 S=mple IDL MUST	WATER WASTE WATER PRODUCT SCIL/SOLID OIL LEID WIPE	WT	MATRIX CODE (see valid code	SAMPLE TYPE (G=GRAB C=C	DATE:	TRÁE	DATE	TIME	SAMPLE TEMP AT COLLECTION	# OF CONTAINERS	Unpreserved	HNO ₃	Hel-	NaOH Na-S-O ₃	Methanol	Other Thet	Chloride, Fluoride, Suffate	Full App. III and IV metals	RAD 226/228	TDS						Residual Chlorine (Y/N)	Pace	e Po	ect No	o./ Laḥ	LD.
1.		HGWC-101		τψ	G	8/16/21	12:50			23	5	2	, 3	Ш				x	×	X	x			T			T			rH = 5.4	40	
2		HGWC-103		τψ	G	8/16/21	1050			19	5	2	. 3	Ш		П		x	×	x	×						T			H = 5.	59	
3		FB-4		WT	G	8/16/21	11:30			19	5	2	. 3	Ш				×	×	X	x											
4		EB-4		WIT	G	8/16/21	11:30			19	5	2	. 3	П				X	×	x	x	10						Last S	amp	le.		
5	-					1	20.0					П													П					1		
6						1						П		Ш	T																	
7					1	-	1					П									T			1								
B.												П				П		Г						1			T	TJ				7
9												П		H	4			Г	Г				L	T				8/16	6/2	021		
16			in the second second																F	F	7	-		Τ.								
-11			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,																Π						-	H	-		T			
12				1.								П	T						T	П			0		T						-	_
		AL COMMENTS		REL	MQU	SHED BY	AFFILIAT	ION	DAT	É	1	TME			A	ĊCEP	TED E	BYIA	FFILL	ATION			DATE		TIME	E		SAM	PLE	DNDITE	SNC	
Please and bot	note dry wells, strike the	adrough any wells not sample for the event has been taken	4. 4	Work	Low	1400	1. 10	700 C	8/1/	El								1	Σ,			7		Ŧ		- 1			T			
				-		Ramsu			816		800	-		1		16	1		10			0	16/75!	+	iere	. 1	-	_	+	1	-	
		****			-			4				-						- 1	100	_				+	1860	_			+	+-+		_
			10	Mou	ws	Muss	le lon		8117	15.	11/2	_		1	~	Wil	100	3/	1	4			17/21	11	126	_		-	1	-		_
L.,			114	man.	W.	11:4~	-		18/17	4		00	19	00	1/6	11	1	er	11	al	E	Y	17/7	0	150	10						
							SAMPL	ER NAME	AND SIG	NATL			1			, 0		1		1		. 1	,				Ó	50		XOIET	Hack	
								PRINT Nan	ne of SAM	PLER	: :/	3/1	Luy		REW	user	1										Temp in 'C	hy od	- Paris	N. N.	100	YAN
								SIGNATU	RE of SAM	PLER		1			-	1			DATE	Sighe D/YY	:d]:	81	16/2	0	13		Terr	Received on los (Y/N)	Ö	Stated Cooler (Y/N)	Samp	(Y/V)

Pace Analytical* www.pacelabs.com

Quality Control Sample Performance Assessment

Test: Ra-226 Analyst: LAL Date: 9/10/2021

Worklist: 62579 Matrix: DW

 Method Blank Assessment
 MB Sample ID
 2237271

 MB concentration:
 0.141

 M/B Counting Uncertainty:
 0.134

 MB MDC:
 0.261

 MB Numerical Performance Indicator:
 2.07

 MB Status vs Numerical Indicator:
 N/A

 MB Status vs. MDC:
 Pass

Laboratory Control Sample Assessment	LCSD (Y or N)?	Υ
	LCS62579	LCSD62579
Count Date:	9/20/2021	9/20/2021
Spike I.D.:	19-033	19-033
Decay Corrected Spike Concentration (pCi/mL):	24.034	24.034
Volume Used (mL):	0.10	0.10
Aliquot Volume (L, g, F):	0.505	0.503
Target Conc. (pCi/L, g, F):	4.761	4.776
Uncertainty (Calculated):	0.057	0.057
Result (pCi/L, g, F):	4.885	4.409
LCS/LCSD Counting Uncertainty (pCi/L, g, F):	0.554	0.532
Numerical Performance Indicator:	0.44	-1.34
Percent Recovery:	102.62%	92.32%
Status vs Numerical Indicator:	N/A	N/A
Status vs Recovery:		Pass
Upper % Recovery Limits:		125%
Lower % Recovery Limits:	75%	75%

Duplicate Sample Assessment		
Sample I.D.:	LCS62579	92555497012
Duplicate Sample I.D.	LCSD62579	92555497012DUP
Sample Result (pCi/L, g, F):	4.885	0.159
Sample Result Counting Uncertainty (pCi/L, g, F):	0.554	0.133
Sample Duplicate Result (pCi/L, g, F):	4.409	0.093
Sample Duplicate Result Counting Uncertainty (pCi/L, g, F):	0.532	0.105
Are sample and/or duplicate results below RL?	NO	See Below ##
Duplicate Numerical Performance Indicator:		0.762
(Based on the LCS/LCSD Percent Recoveries) Duplicate RPD:	10.57%	52.40%
Duplicate Status vs Numerical Indicator:		N/A
Duplicate Status vs RPD:	Pass	Fail***
% RPD Limit	25%	25%

Evaluation of duplicate precision is not applicable if either the sample or duplicate results at

Comments:

***Betch must be re-prepped due to unacceptable precision. NIA

NIA van 9/20/21

Analyst Must Manually Enter All Fields Highlighted in Yellow.

Sample Matrix Spike Control Assessment	MS/MSD 1	MS/MSD 2
Sample Collection Date:		
Sample I.D.		
Sample MS I.D.		
Sample MSD I.D.		
Spike I.D.:		
MS/MSD Decay Corrected Spike Concentration (pCi/mL):		
Spike Volume Used in MS (mL):		
Spike Volume Used in MSD (mL):		
MS Aliquot (L, g, F):	,	
MS Target Conc.(pCi/L, g, F):		
MSD Aliquot (L, g, F):		
MSD Target Conc. (pCi/L, g, F):		
MS Spike Uncertainty (calculated):		
MSD Spike Uncertainty (calculated):		
Sample Result:		
Sample Result Counting Uncertainty (pCi/L, g, F):		
Sample Matrix Spike Result:		
Matrix Spike Result Counting Uncertainty (pCi/L, g, F):		
Sample Matrix Spike Duplicate Result:		
Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F): MS Numerical Performance Indicator:		
MSD Numerical Performance Indicator:		
MSD Numerical Performance Indicator: MS Percent Recovery:		
MSD Percent Recovery:		
MS Status vs Numerical Indicator:		
MSD Status vs Numerical Indicator:		
MS Status vs Recovery:		
MSD Status vs Recovery;		
MS/MSD Upper % Recovery Limits:		
MS/MSD Lower % Recovery Limits:		

Matrix Spike/Matrix Spike Duplicate Sample Assessment	
Sample I.D.	
Sample MS I.D.	
Sample MSD I.D.	
Sample Matrix Spike Result:	
Matrix Spike Result Counting Uncertainty (pCi/L, g, F):	
Sample Matrix Spike Duplicate Result:	
Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F):	
Duplicate Numerical Performance Indicator:	
(Based on the Percent Recoveries) MS/ MSD Duplicate RPD:	
MS/ MSD Duplicate Status vs Numerical Indicator:	
MS/ MSD Duplicate Status vs RPD:	
% RPD Limit:	

May

VAM 9/20/21

Pace Analytical www.pacelabs.com

Quality Control Sample Performance Assessment

Test: Ra-228
Analyst: JC2
Date: 9/1/2021

Date: 9/1/2022 Worklist: 62391 Matrix: WT

 Method Blank Assessment
 MB Sample ID
 2230398

 MB concentration:
 0.353

 MB 2 Sigma CSU:
 0.350

 MB MDC:
 0.718

 MB Numerical Performance Indicator:
 1.97

 MB Status vs Numerical Indicator:
 Pass

 MB Status vs. MDC:
 Pass

Laboratory Control Sample Assessment	LCSD (Y or N)?	Υ
	LCS62391 ,	LCSD62391
Count Date:	9/3/2021	9/3/2021
Spike I.D.:	21-029	21-029
Decay Corrected Spike Concentration (pCi/mL):	38.363	38.363
Volume Used (mL):	0.10	0,10
Aliquot Volume (L, g, F):	0.809	0.805
Target Conc. (pCi/L, g, F):	4.742	4.764
Uncertainty (Calculated):	0.232	0.233
Result (pCi/L, g, F):		3.328
LCS/LCSD 2 Sigma CSU (pCi/L, g, F):	0.857	0.867
Numerical Performance Indicator:	-3.04	-3.14
Percent Recovery:		69.85%
Status vs Numerical Indicator:	N/A	N/A
Status vs Recovery:		Pass
Upper % Recovery Limits:		135%
Lower % Recovery Limits:	60%	60%

Duplicate Sample Assessment		
Sample l.D.: Duplicate Sample l.D. Sample Result (pCi/L, g, F): Sample Result 2 Sigma CSU (pCi/L, g, F): Sample Duplicate Result (pCi/L, g, F): Sample Duplicate Result (pCi/L, g, F): Are sample and/or duplicate results below RL?	LCSD62391 3.364 0.857 3.328 0.867	Enter Duplicate sample IDs if other than LCS/LCSD in the space below.
Duplicate Numerical Performance Indicator: (Based on the LCS/LCSD Percent Recoveries) Duplicate RPD:	0.059 1.58%	
Duplicate Status vs Numerical Indicator: Duplicate Status vs RPD: % RPD Limit:	Pass	

Analyst Must Manually Enter All Fields Highlighted in Yellow.

	Sample Matrix Spike Control Assessment	MS/MSD 1	MS/MSD 2
	Sample Collection Date:		
	Sample I.D.		
	Sample MS I.D.		
	Sample MSD I.D.	Princip Grown William	
	Spike I.D.:		
	MS/MSD Decay Corrected Spike Concentration (pCi/mL):		
	Spike Volume Used in MS (mL):	instruction of the	paan an enking
	Spike Volume Used in MSD (mL):		
	MS Aliquot (L, g, F):		
	MS Target Conc.(pCi/L, g, F):		
	MSD Aliquot (L, g, F):		
	MSD Target Conc. (pCi/L, g, F):		
	MS Spike Uncertainty (calculated):		
l	MSD Spike Uncertainty (calculated):		
l	Sample Result:		
ı	Sample Result 2 Sigma CSU (pCi/L, g, F):		
ı	Sample Matrix Spike Result:		
l	Matrix Spike Result 2 Sigma CSU (pCi/L, g, F):		
l	Sample Matrix Spike Duplicate Result:		
ı	Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F):		
l	MS Numerical Performance Indicator:		
ı	MSD Numerical Performance Indicator:		
l	MS Percent Recovery: MSD Percent Recovery:		
L	MS Status vs Numerical Indicator:		
	MSD Status vs Numerical Indicator:		
1.	MS Status vs Recovery:		
	MSD Status vs Recovery:		
1	MS/MSD Upper % Recovery Limits:		
ı	MS/MSD Lower % Recovery Limits:		

latrix Spike/Matrix Spike Duplicate Sample Assessment	
Sample I.D.	
Sample MS I.D.	1
Sample MSD I.D.	
Sample Matrix Spike Result:	
Matrix Spike Result 2 Sigma CSU (pCi/L, g, F):	
Sample Matrix Spike Duplicate Result:	
Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F):	
Duplicate Numerical Performance Indicator:	
(Based on the Percent Recoveries) MS/ MSD Duplicate RPD;	
MS/ MSD Duplicate Status vs Numerical Indicator:	. 1
MS/ MSD Duplicate Status vs RPD:	
% RPD Limit:	

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Comments:

Pace Analytical www.pacelabs.com

Quality Control Sample Performance Assessment

Test: Ra-228
Analyst: VAL
Date: 9/14/2021

Worklist: 62576 Matrix: WT

Method Blank Assessment

MB Sample ID 2237266

MB concentration: 0.209

M/B 2 Sigma CSU: 0.312

MB MDC: 0.674

MB Numerical Performance Indicator: 1.31

MB Status vs Numerical Indicator: Pass

MB Status vs. MDC: Pass

Laboratory Control Sample Assessment	LCSD (Y or N)?	Υ
	LCS62576	LCSD62576
Count Date:	9/16/2021	9/16/2021
Spike I.D.:	21-029	21-029
Decay Corrected Spike Concentration (pCi/mL):	38.200	38.200
Volume Used (mL):	0.10	0,10
Aliquot Volume (L, g, F):	0.811	0.809
Target Conc. (pCi/L, g, F):	4.708	4.722
Uncertainty (Calculated):	0.231	0.231
Result (pCi/L, g, F):	5.680	5.498
LCS/LCSD 2 Sigma CSU (pCi/L, g, F):	1.224	1.181
Numerical Performance Indicator:	1.53	1.26
Percent Recovery:	120.65%	116.43%
Status vs Numerical Indicator:	N/A	N/A
Status vs Recovery:	Pass	Pass
Upper % Recovery Limits:	135%	135%
Lower % Recovery Limits:	60%	60%

Duplicate Sample Assessment		
Sample I.D.: Duplicate Sample I.D.: Sample Result (pCi/L, g, F): Sample Result 2 Sigma CSU (pCi/L, g, F): Sample Duplicate Result (pCi/L, g, F): Sample Duplicate Result (pCi/L, g, F): Are sample and/or duplicate results below RL?	LCSD62576 5,680 1,224 5,498 1,181	Enter Duplicate sample IDs if other than LCS/LCSD in the space below.
Duplicate Numerical Performance Indicator:		
(Based on the LCS/LCSD Percent Recovenes) Duplicate RPD:	1	
Duplicate Status vs Numerical Indicator:		
Duplicate Status vs RPD:	Pass	
% RPD Limit:	36%	l

Analyst Must Manually Enter All Fields Highlighted in Yellow.

Sample Matrix Spike Control Assessment	MS/MSD 1	MS/MSD 2
Sample Collection Date:		
* Sample I.D.	SENTENCE TO SERVE	指挥的统治
Sample MS I.D.		
Sample MSD I.D.		
Spike I.D.:		
MS/MSD Decay Corrected Spike Concentration (pCi/mL):		
Spike Volume Used in MS (mL):	自然的 经净分额法	
Spike Volume Used in MSD (mL):		
MS Aliquot (L, g, F):		İ
MS Target Conc.(pCi/L, g, F):		
MSD Aliquot (L, g, F):		
MSD Target Conc. (pCi/L, g, F)		
MS Spike Uncertainty (calculated):		
MSD Spike Uncertainty (calculated):	1	
Sample Result	1	
Sample Result 2 Sigma CSU (pCi/L, g, F):		
Sample Matrix Spike Result	1	
Matrix Spike Result 2 Sigma CSU (pCi/L, g, F):	ŧ .	
Sample Matrix Spike Duplicate Result		
Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F)		
MS Numerical Performance Indicator	1	
MSD Numerical Performance Indicator	1	
MS Percent Recovery	l.	
MSD Percent Recovery	I .	
MS Status vs Numerical Indicator	E .	
MSD Status vs Numerical Indicator		
MS Status vs Recovery	ł	
MSD Status vs Recovery	1	
MS/MSD Upper % Recovery Limits MS/MSD Lower % Recovery Limits		
WIS/WISD LOWER % RECOVERY LITTRES	1	1

Matrix Spike/Matrix Spike Duplicate Sample Assessment	
Sample I.D. Sample MS I.D.	
Sample MSD I.D.	
Sample Matrix Spike Result:	
Matrix Spike Result 2 Sigma CSU (pCi/L, g, F):	
Sample Matrix Spike Duplicate Result:	
Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F):	
Duplicate Numerical Performance Indicator:	
(Based on the Percent Recoveries) MS/ MSD Duplicate RPD:	
MS/ MSD Duplicate Status vs Numerical Indicator:	
MS/ MSD Duplicate Status vs RPD:	
% RPD Limit:	

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Comments:

OM CIIISIDI

Pace Analytical*

Quality Control Sample Performance Assessment

Test: Ra-226
Analyst: LAL
Date: 9/10/2021
Worklist: 62577

DW

Matrix:

 Method Blank Assessment
 MB Sample ID
 2237267

 MB concentration:
 0.087

 M/B Counting Uncertainty:
 0.121

 MB MDC:
 0.260

 MB Numerical Performance Indicator:
 1.42

 MB Status vs Numerical Indicator:
 N/A

 MB Status vs. MDC:
 Pass

Laboratory Control Sample Assessment	LCSD (Y or N)?	Y
	LCS62577	LCSD62577
Count Date:	9/20/2021	9/20/2021
Spike I.D.:	19-033	19-033
Decay Corrected Spike Concentration (pCi/mL):	24.034	24.034
Volume Used (mL):	0.10	0.10
Aliquot Volume (L, g, F):	0.517	0.516
Target Conc. (pCi/L, g, F):	4.653	4.655
Uncertainty (Calculated):	0.056	0.056
Result (pCi/L, g, F):	4.506	4.521
LCS/LCSD Counting Uncertainty (pCi/L, g, F):	0.528	0.537
Numerical Performance Indicator:	-0.54	-0.49
Percent Recovery:	96.85%	97.11%
Status vs Numerical Indicator:	N/A	N/A
Status vs Recovery:		Pa s s
Upper % Recovery Limits:		125%
Lower % Recovery Limits:	75%	75%

Duplicate Sample Assessment		
Sample I.D.:	LCS62577	92555497007
Duplicate Sample I.D.	LCSD62577	92555497007DUP
Sample Result (pCi/L, g, F):	4.506	0.141
Sample Result Counting Uncertainty (pCi/L, g, F):	0.528	0.150
Sample Duplicate Result (pCi/L, g, F):	4.521	0.202
Sample Duplicate Result Counting Uncertainty (pCi/L, g, F):	0.537	0.163
Are sample and/or duplicate results below RL?	NO	See Below ##
Duplicate Numerical Performance Indicator:	-0.039	-0.540
(Based on the LCS/LCSD Percent Recoveries) Duplicate RPD:	0.27%	35.65%
Duplicate Status vs Numerical Indicator:	N/A	N/A
Duplicate Status vs RPD:	Pass	Fail***
% RPD Limit:	25%	25%

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC

Analyst Must Manually Enter All Fields Highlighted in Yellow.

Sample Matrix Spike Control Assessment	MS/MSD 1	MS/MSD 2
Sample Collection Date:		
Sample I.D.		
Sample MS I.D.		
Sample MSD i.D.		
Spike I.D.:		
MS/MSD Decay Corrected Spike Concentration (pCi/mL):		
Spike Volume Used in MS (mL):		
Spike Volume Used in MSD (mL):		
MS Aliquot (L, g, F):		
MS Target Conc.(pCi/L, g, F):		
MSD Aliquot (L, g, F):		
MSD Target Conc. (pCi/L, g, F):		
MS Spike Uncertainty (calculated):		
MSD Spike Uncertainty (calculated):		
Sample Result:		
Sample Result Counting Uncertainty (pCi/L, g, F):		
Sample Matrix Spike Result: Matrix Spike Result Counting Uncertainty (pCi/L, g, F):	:	
Sample Matrix Spike Duplicate Result: Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F):		
MS Numerical Performance Indicator:		
MSD Numerical Performance Indicator:		
MS Percent Recovery:		
MSD Percent Recovery:		
MS Status vs Numerical Indicator:		
MSD Status vs Numerical Indicator:		
MS Status vs Recovery:		
MSD Status vs Recovery:		
MS/MSD Upper % Recovery Limits:		
MS/MSD Lower % Recovery Limits:		

Sample I.D.	
Sample MS I.D.	
Sample MSD I.D.	
Sample Matrix Spike Result:	
Matrix Spike Result Counting Uncertainty (pCi/L, g, F):	
Sample Matrix Spike Duplicate Result:	
Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F):	
Duplicate Numerical Performance Indicator:	
(Based on the Percent Recoveries) MS/ MSD Duplicate RPD:	
MS/ MSD Duplicate Status vs Numerical Indicator:	
MS/ MSD Duplicate Status vs RPD:	
% RPD Limit:	

Comments:

***Batch must be re-prepped due to unacceptable precision. N

- NIA uam 9/21/21

Matrix Spike/Matrix Spike Duplicate Sample Assessment

um 9/21/21

Pace Analytical www.pacelabs.com

Quality Control Sample Performance Assessment

Test: Ra-228
Analyst: JC2
Date: 9/14/2021
Worklist: 62578
Matrix: WT

Method Blank Assessment

MB Sample ID

2237270

MB concentration:
0.257

M/B 2 Sigma CSU:
0.278

MB MDC:
0.577

MB Numerical Performance Indicator:
MB Status vs Numerical Indicator:
Pass
MB Status vs. MDC:
Pass

Laboratory Control Sample Assessment	LCSD (Y or N)?	Υ
	LCS62578	LCSD62578
Count Date:	9/16/2021	9/16/2021
Spike I.D.:	21-029	21-029
Decay Corrected Spike Concentration (pCi/mL):	38.200	38.200
Volume Used (mL):	0.10	0,10
Aliquot Volume (L, g, F):	0.807	0.808
Target Conc. (pCi/L, g, F):	4.735	4.730
Uncertainty (Calculated):	0.232	0.232
Result (pCi/L, g, F):	6.192	5.055
LCS/LCSD 2 Sigma CSU (pCi/L, g, F):	1.333	1.121
Numerical Performance Indicator:	2.11	0.56
Percent Recovery:	130.77%	106.87%
Status vs Numerical Indicator:	N/A	N/A
Status vs Recovery:		Pass
Upper % Recovery Limits:		135%
Lower % Recovery Limits:	60%	60%

Duplicate Sample Assessment	·	
Sample I.D.: Duplicate Sample I.D.: Sample Result (pCi/L, g, F): Sample Result 2 Sigma CSU (pCi/L, g, F): Sample Duplicate Result (pCi/L, g, F): Sample Duplicate Result 2 Sigma CSU (pCi/L, g, F):	LCSD62578 6.192 1.333 5.055 1.121	Enter Duplicate sample IDs if other than LCS/LCSD in the space below.
Are sample and/or duplicate results below RL? Duplicate Numerical Performance Indicator: (Based on the LCS/LCSD Percent Recoveries) Duplicate RPD:	1.280	
Duplicate Status vs Numerical Indicator: Duplicate Status vs RPD: % RPD Limit:	Pass Pass	

Analyst Must Manually Enter All Fields Highlighted in Yellow.

Sample Matrix Spike Control Assessment	MS/MSD 1	MS/MSD 2
Sample Collection D)ate:	
Sample	I.D.	
Sample MS	I.D.	
Sample MSD	I.D.	SEPTEMBER .
Spike	I.D.:	
MS/MSD Decay Corrected Spike Concentration (pCi/	mL):	
Spike Volume Used in MS (mL):	现在中经过时等的
Spike Volume Used in MSD (mL):	
MS Aliquot (L, g	ı, F):	
MS Target Conc.(pCi/L, g	ı, F):	
MSD Aliquot (L, g	ı, F):	
MSD Target Conc. (pCi/L, g	ı, F):	
MS Spike Uncertainty (calculate	ted):	
MSD Spike Uncertainty (calculate	ted):	
Sample Re	sult:	
Sample Result 2 Sigma CSU (pCi/L, g	ı, F):	
Sample Matrix Spike Re	sult:	
Matrix Spike Result 2 Sigma CSU (pCi/L, g	ı, F):	
Sample Matrix Spike Duplicate Re	sult:	
Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g	ı, F):	1
MS Numerical Performance Indica	ator:	
MSD Numerical Performance Indic	ator:	1
MS Percent Recov	very:	
MSD Percent Recov	· 1	
MS Status vs Numerical Indic		
MSD Status vs Numerical Indic	1	1
MS Status vs Recov	- 1	
MSD Status vs Recov		
MS/MSD Upper % Recovery Lin		
MS/MSD Lower % Recovery Lin	mits:	1

Matrix Spike/Matrix Spike Duplicate Sample Assessment	
Sample i.D.	
Sample MS I.D.	
Sample MSD I.D.	
Sample Matrix Spike Result:	
Matrix Spike Result 2 Sigma CSU (pCi/L, g, F):	
Sample Matrix Spike Duplicate Result:	
Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F):	
Duplicate Numerical Performance Indicator:	
(Based on the Percent Recovenes) MS/ MSD Duplicate RPD:	
MS/ MSD Duplicate Status vs Numerical Indicator:	İ
MS/ MSD Duplicate Status vs RPD:	
% RPD Limit:	

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Comments:

Ch 17/2/

110/1100 0

Quality Control Sample Performance Assessment

Test: Ra-226
Analyst: CLA
Date: 1/0/1900
Worklist: 62605

DW

Matrix:

Method Blank Assessment		
	MB Sample ID	2237360
	MB concentration:	0.250
	M/B Counting Uncertainty:	0.180
	MB MDC:	0.307
1	MB Numerical Performance Indicator:	2.72
	MB Status vs Numerical Indicator:	N/A
	MB Status vs. MDC:	Pass

Laboratory Control Sample Assessment	LCSD (Y or N)?	Y
	LCS62605	LCSD62605
Count Date:	9/15/2021	9/15/2021
Spike I.D.:	19-033	19-033
Decay Corrected Spike Concentration (pCi/mL):	24.034	24.034
Volume Used (mL):	0.10	0.10
Aliquot Volume (L, g, F):	0.503	0.505
Target Conc. (pCi/L, g, F):	4.775	4.759
Uncertainty (Calculated):	0.057	0.057
Result (pCi/L, g, F):	4.197	3.605
LCS/LCSD Counting Uncertainty (pCi/L, g, F):	0.681	0.612
Numerical Performance Indicator:	-1.66	-3.68
Percent Recovery:	87.89%	75.74%
Status vs Numerical Indicator:	N/A	N/A
Status vs Recovery:	Pass	Pass
Upper % Recovery Limits:		125%
Lower % Recovery Limits:	75%	75%

Duplicate Sample Assessment		
Sample I.D.:	LCS62605	92555928001
Duplicate Sample I.D.	LCSD62605	92555928001DUP
Sample Result (pCi/L, g, F):	4.197	0.048
Sample Result Counting Uncertainty (pCi/L, g, F):	0.681	0.100
Sample Duplicate Result (pCi/L, g, F):	3.605	0.160
Sample Duplicate Result Counting Uncertainty (pCi/L, g, F):	0.612	0.106
Are sample and/or duplicate results below RL?	NO	See Below ##
Duplicate Numerical Performance Indicator:	1.269	-1.509
(Based on the LCS/LCSD Percent Recoveries) Duplicate RPD:	14.86%	108.01%
Duplicate Status vs Numerical Indicator:	N/A	N/A
Duplicate Status vs RPD:	Pass	Fail***
% RPD Limit*	25%	25%

Analyst Must Manually Enter All Fields Highlighted in Yellow.

	Sample Matrix Spike Control Assessment	MS/MSD 1	MS/MSD 2
	Sample Collection Date:		
	Sample I.D.		
	Sample MS I.D.		
	Sample MSD I.D.		
	Spike I.D.:		
	MS/MSD Decay Corrected Spike Concentration (pCi/mL):		
	Spike Volume Used in MS (mL):		
	Spike Volume Used in MSD (mL):		
	MS Aliquot (L, g, F):		
	MS Target Conc.(pCi/L, g, F):		
	MSD Aliquot (L, g, F):		
	MSD Target Conc. (pCi/L, g, F):		
-	MS Spike Uncertainty (calculated):		
1	MSD Spike Uncertainty (calculated):		
1	Sample Result:		
1	Sample Result Counting Uncertainty (pCi/L, g, F):		
ı	Sample Matrix Spike Result:		
	Matrix Spike Result Counting Uncertainty (pCi/L, g, F):		
ı	Sample Matrix Spike Duplicate Result:		
ı	Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F): MS Numerical Performance Indicator:		
ı	MSD Numerical Performance Indicator:		
ı	MSD Numerical Performance Indicator. MS Percent Recovery:		
ı	MSD Percent Recovery:		
ı	MS Status vs Numerical Indicator:		
ı	MSD Status vs Numerical Indicator:		
L	MS Status vs Recovery:		
ı	MSD Status vs Recovery:		
ı	MS/MSD Upper % Recovery Limits:		
ı	MS/MSD Lower % Recovery Limits:		

Matrix Spike/Matrix Spike Duplicate Sample Assessment	
Sample I.D. Sample MS I.D.	! I
Sample MSD I.D.	
Sample Matrix Spike Result: Matrix Spike Result Counting Uncertainty (pCi/L, g, F):	
Sample Matrix Spike Duplicate Result:	
Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F): Duplicate Numerical Performance Indicator:	1
(Based on the Percent Recoveries) MS/ MSD Duplicate RPD: MS/ MSD Duplicate Status vs Numerical Indicator:	1
MS/ MSD Duplicate Status vs RPD:	
% RPD Limit:	

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Comments:

^{***}Batch must be re-prepped due to unacceptable precision.

September 2021

October 14, 2021

Joju Abraham Georgia Power-CCR 2480 Maner Road Atlanta, GA 30339

RE: Project: HAMMOND AP-4

Pace Project No.: 92564042

Dear Joju Abraham:

Enclosed are the analytical results for sample(s) received by the laboratory on September 29, 2021. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

- Pace Analytical Services Asheville
- Pace Analytical Services Charlotte
- Pace Analytical Services Peachtree Corners, GA

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Nicole D'Oleo nicole.d'oleo@pacelabs.com (704)875-9092

Mirole D'oler

Project Manager

Enclosures

cc: Christine Hug, Geosyntec Consultants, Inc.

Kristen Jurinko

Thomas Kessler, Geosyntec Whitney Law, Geosyntec Consultants Noelia Muskus, Geosyntec Consultants Ms. Lauren Petty, Southern Company

Nardos Tilahun, GeoSyntec

Dawit Yifru, Geosyntec Consultants, Inc.

CERTIFICATIONS

Project: HAMMOND AP-4

Pace Project No.: 92564042

Pace Analytical Services Charlotte

9800 Kincey Ave. Ste 100, Huntersville, NC 28078 Louisiana/NELAP Certification # LA170028

North Carolina Drinking Water Certification #: 37706 North Carolina Field Services Certification #: 5342 North Carolina Wastewater Certification #: 12 Florida/NELAP Certification #: E87627 Kentucky UST Certification #: 84 Virginia/VELAP Certification #: 460221

South Carolina Certification #: 99006001

Pace Analytical Services Asheville

2225 Riverside Drive, Asheville, NC 28804 Florida/NELAP Certification #: E87648

North Carolina Drinking Water Certification #: 37712

North Carolina Wastewater Certification #: 40 South Carolina Certification #: 99030001 Virginia/VELAP Certification #: 460222

Pace Analytical Services Peachtree Corners

110 Technology Pkwy, Peachtree Corners, GA 30092 Florida DOH Certification #: E87315 Georgia DW Inorganics Certification #: 812

North Carolina Certification #: 381 South Carolina Certification #: 98011001

SAMPLE SUMMARY

Project: HAMMOND AP-4

Pace Project No.: 92564042

Lab ID	Sample ID	Matrix	Date Collected	Date Received
92564042001	HGWC-117	Water	09/27/21 15:26	09/29/21 11:50
92564042002	HGWC-117A	Water	09/27/21 13:47	09/29/21 11:50

SAMPLE ANALYTE COUNT

Project: HAMMOND AP-4

Pace Project No.: 92564042

Lab ID	Sample ID	Method	Analysts	Analytes Reported
92564042001	HGWC-117	EPA 6010D	DRB	1
		EPA 6020B	KH	13
		EPA 7470A	VB	1
		SM 2540C-2011	ALW	1
		EPA 300.0 Rev 2.1 1993	CDC	3
92564042002	HGWC-117A	EPA 6010D	DRB	1
		EPA 6020B	KH	13
		EPA 7470A	VB	1
		SM 2540C-2011	ALW	1
		EPA 300.0 Rev 2.1 1993	CDC	3

PASI-A = Pace Analytical Services - Asheville PASI-C = Pace Analytical Services - Charlotte

PASI-GA = Pace Analytical Services - Peachtree Corners, GA

SUMMARY OF DETECTION

Project: HAMMOND AP-4

Pace Project No.: 92564042

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
92564042001	HGWC-117					
	Performed by	CUSTOME R			09/29/21 16:22	
	рН	5.66	Std. Units		09/29/21 16:22	
EPA 6010D	Calcium	37.5	mg/L	1.0	10/07/21 19:54	
EPA 6020B	Barium	0.038	mg/L	0.0050	10/08/21 21:33	
EPA 6020B	Boron	0.67	mg/L	0.040	10/08/21 21:33	
EPA 6020B	Cadmium	0.00098	mg/L	0.00050	10/08/21 21:33	
EPA 6020B	Cobalt	0.015	mg/L	0.0050	10/08/21 21:33	
EPA 6020B	Lithium	0.0016J	mg/L	0.030	10/08/21 21:33	
SM 2540C-2011	Total Dissolved Solids	242	mg/L	10.0	10/03/21 11:38	
EPA 300.0 Rev 2.1 1993	Chloride	3.4	mg/L	1.0	10/01/21 02:09	
EPA 300.0 Rev 2.1 1993	Sulfate	104	mg/L	2.0	10/01/21 10:48	
92564042002	HGWC-117A					
	Performed by	CUSTOME R			09/29/21 16:22	
	рН	6.14	Std. Units		09/29/21 16:22	
EPA 6010D	Calcium	47.2	mg/L	1.0	10/07/21 20:08	
EPA 6020B	Barium	0.062	mg/L	0.0050	10/08/21 21:39	
EPA 6020B	Boron	0.30	mg/L	0.040	10/08/21 21:39	
EPA 6020B	Cobalt	0.0011J	mg/L	0.0050	10/08/21 21:39	
EPA 6020B	Lithium	0.0035J	mg/L	0.030	10/08/21 21:39	
SM 2540C-2011	Total Dissolved Solids	223	mg/L	10.0	10/03/21 11:38	
EPA 300.0 Rev 2.1 1993	Chloride	4.5	mg/L	1.0	10/01/21 02:25	
EPA 300.0 Rev 2.1 1993	Sulfate	69.7	mg/L	1.0	10/01/21 02:25	

ANALYTICAL RESULTS

Project: HAMMOND AP-4

Pace Project No.: 92564042

Date: 10/14/2021 01:56 PM

Sample: HGWC-117	Lab ID: 92564042001 Collected: 09/27/21 15:26 Received: 09/29/21 11:50 Matrix: W							atrix: Water	
_			Report						
Parameters	Results -	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Ana	llytical Services	- Charlotte	;					
Performed by	CUSTOME R				1		09/29/21 16:22		
рН	5.66	Std. Units			1		09/29/21 16:22		
6010D ATL ICP	•	Method: EPA 6				PA 3010A			
Calcium	37.5	mg/L	1.0	0.12	1	10/07/21 11:53	10/07/21 19:54	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA 6	6020B Prei	paration Met	hod: EF	PA 3005A			
	•	lytical Services							
Antimony	ND	mg/L	0.0030	0.00078	1	10/08/21 10:25	10/08/21 21:33	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.0011	1	10/08/21 10:25	10/08/21 21:33	7440-38-2	
Barium	0.038	mg/L	0.0050	0.00067	1	10/08/21 10:25	10/08/21 21:33	7440-39-3	
Beryllium	ND	mg/L	0.00050	0.000054	1	10/08/21 10:25	10/08/21 21:33	7440-41-7	
Boron	0.67	mg/L	0.040	0.0086	1	10/08/21 10:25	10/08/21 21:33	7440-42-8	
Cadmium	0.00098	mg/L	0.00050	0.00011	1	10/08/21 10:25	10/08/21 21:33	7440-43-9	
Chromium	ND	mg/L	0.0050	0.0011	1		10/08/21 21:33		
Cobalt	0.015	mg/L	0.0050	0.00039	1		10/08/21 21:33		
Lead	ND	mg/L	0.0010	0.00089	1		10/08/21 21:33		
Lithium	0.0016J	mg/L	0.030	0.00073	1		10/08/21 21:33		
Molybdenum	ND	mg/L	0.010	0.00074	1		10/08/21 21:33		
Selenium	ND	mg/L	0.0050	0.0014	1		10/08/21 21:33		
Thallium	ND	mg/L	0.0010	0.00014	1		10/08/21 21:33		
		· ·					10/00/21 21.33	7440 20 0	
7470 Mercury	•	Method: EPA 7				A 7470A			
Mercury	ND	mg/L		0.000078	1	10/12/21 07:00	10/13/21 11:23	7420 07 6	
•		· ·		0.000076	1	10/13/21 07.00	10/13/21 11.23	7439-97-0	
2540C Total Dissolved Solids	•	Method: SM 2							
	Pace Ana	llytical Services	- Peachtre	e Corners, C	SA .				
Total Dissolved Solids	242	mg/L	10.0	10.0	1		10/03/21 11:38		
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0 Rev 2	2.1 1993					
	Pace Ana	llytical Services	- Asheville						
Chloride	3.4	mg/L	1.0	0.60	1		10/01/21 02:09	16887-00-6	
Fluoride	ND	mg/L	0.10	0.050	1		10/01/21 02:09		
Sulfate	104	mg/L	2.0	1.0	2		10/01/21 02:09		

ANALYTICAL RESULTS

Project: HAMMOND AP-4

Pace Project No.: 92564042

Date: 10/14/2021 01:56 PM

Sample: HGWC-117A	Lab ID:	92564042002	Collecte	ed: 09/27/2	1 13:47	Received: 09/	/29/21 11:50 Ma	atrix: Water	
_			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	_ Analyzed 	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Charlotte	:					
Performed by	CUSTOME				1		09/29/21 16:22		
Н	R 6.14	Std. Units			1		09/29/21 16:22		
6010D ATL ICP	Analytical	Method: EPA 6	6010D Pre	paration Me	thod: Ef	PA 3010A			
	•	lytical Services							
Calcium	47.2	mg/L	1.0	0.12	1	10/07/21 11:53	10/07/21 20:08	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA 6	8020B Pre	naration Me	hod: FF	PA 3005A			
5020 III.21 101 III.0	•	lytical Services							
Antimony	ND	mg/L	0.0030	0.00078	1	10/08/21 10:25	10/08/21 21:39	7440-36-0	
Anumony Arsenic	ND ND	mg/L	0.0030	0.00078	1	10/08/21 10:25	10/08/21 21:39		
Barium	0.062	mg/L	0.0050	0.0011	1	10/08/21 10:25	10/08/21 21:39		
Beryllium	0.002 ND	mg/L	0.0050	0.00007	1		10/08/21 21:39		
Boron	0.30	-	0.00030	0.000034	1		10/08/21 21:39		
Cadmium	0.30 ND	mg/L	0.040	0.0000	1		10/08/21 21:39		
Chromium	ND ND	mg/L	0.0050	0.00011			10/08/21 21:39		
	0.0011J	mg/L			1 1				
Cobalt	0.00113 ND	mg/L	0.0050	0.00039			10/08/21 21:39		
Lead		mg/L	0.0010	0.00089	1		10/08/21 21:39		
Lithium	0.0035J	mg/L	0.030	0.00073	1		10/08/21 21:39		
Molybdenum	ND	mg/L	0.010	0.00074	1		10/08/21 21:39		
Selenium	ND	mg/L	0.0050	0.0014	1	10/08/21 10:25	10/08/21 21:39		
Thallium	ND	mg/L	0.0010	0.00018	1	10/08/21 10:25	10/08/21 21:39	7440-28-0	
7470 Mercury	Analytical	Method: EPA 7	7470A Prej	paration Met	hod: EF	PA 7470A			
	Pace Ana	lytical Services	- Peachtre	e Corners, (βA				
Mercury	ND	mg/L	0.00020	0.000078	1	10/13/21 07:00	10/13/21 11:31	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 2	540C-2011						
	•	lytical Services		e Corners, 0	βA				
Total Dissolved Solids	223	mg/L	10.0	10.0	1		10/03/21 11:38		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	300.0 Rev 2	2.1 1993					
•	Pace Ana	lytical Services	- Asheville						
Chloride	4.5	mg/L	1.0	0.60	1		10/01/21 02:25	16887-00-6	
Fluoride	ND	mg/L	0.10	0.050	1		10/01/21 02:25		
Sulfate	69.7	mg/L	1.0	0.50	1		10/01/21 02:25		

Project:

HAMMOND AP-4

Pace Project No.:

92564042

QC Batch:

651397

QC Batch Method: **EPA 3010A** Analysis Method:

EPA 6010D

Analysis Description:

6010D ATL

Laboratory:

Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples:

Associated Lab Samples:

92564042001, 92564042002

METHOD BLANK:

3416096

92564042001, 92564042002

Matrix: Water

Blank Result Reporting

Limit

0.99J

MDL Analyzed

Qualifiers

Calcium

Calcium

Units mg/L

Units

mg/L

ND

1.0

0.12 10/07/21 18:37

80-120

LABORATORY CONTROL SAMPLE:

Parameter

Parameter

Date: 10/14/2021 01:56 PM

Parameter

3416097

Spike Conc.

LCS Result

LCS % Rec % Rec Limits

94

Qualifiers

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:

3416098

MSD

7.5

MS Spike

MS Result

8.4

3416099

MS % Rec

99

MSD

% Rec

Max RPD

Calcium

92563761001 Units Result

mg/L

Spike Conc. Conc.

Result 8.4

MSD

% Rec 91 Limits 75-125

RPD

Qual 20 0

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: HAMMOND AP-4

Pace Project No.: 92564042

Date: 10/14/2021 01:56 PM

QC Batch: 651684
QC Batch Method: EPA 3005A

Analysis Method: EPA 6020B Analysis Description: 6020 MET

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92564042001, 92564042002

METHOD BLANK: 3417564 Matrix: Water

Associated Lab Samples: 92564042001, 92564042002

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Antimony	mg/L	ND ND	0.0030	0.00078	10/08/21 19:44	
Arsenic	mg/L	ND	0.0050	0.0011	10/08/21 19:44	
Barium	mg/L	ND	0.0050	0.00067	10/08/21 19:44	
Beryllium	mg/L	ND	0.00050	0.000054	10/08/21 19:44	
Boron	mg/L	ND	0.040	0.0086	10/08/21 19:44	
Cadmium	mg/L	ND	0.00050	0.00011	10/08/21 19:44	
Chromium	mg/L	ND	0.0050	0.0011	10/08/21 19:44	
Cobalt	mg/L	ND	0.0050	0.00039	10/08/21 19:44	
.ead	mg/L	ND	0.0010	0.00089	10/08/21 19:44	
ithium	mg/L	ND	0.030	0.00073	10/08/21 19:44	
Nolybdenum	mg/L	ND	0.010	0.00074	10/08/21 19:44	
Selenium	mg/L	ND	0.0050	0.0014	10/08/21 19:44	
hallium	mg/L	ND	0.0010	0.00018	10/08/21 19:44	

LABORATORY CONTROL SAMPLE	: 3417565					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Antimony	mg/L	0.1	0.11	108	80-120	
Arsenic	mg/L	0.1	0.099	99	80-120	
Barium	mg/L	0.1	0.096	96	80-120	
Beryllium	mg/L	0.1	0.092	92	80-120	
Boron	mg/L	1	0.91	91	80-120	
Cadmium	mg/L	0.1	0.10	102	80-120	
Chromium	mg/L	0.1	0.094	94	80-120	
Cobalt	mg/L	0.1	0.090	90	80-120	
Lead	mg/L	0.1	0.093	93	80-120	
Lithium	mg/L	0.1	0.094	94	80-120	
Molybdenum	mg/L	0.1	0.097	97	80-120	
Selenium	mg/L	0.1	0.097	97	80-120	
Thallium	mg/L	0.1	0.092	92	80-120	

MATRIX SPIKE & MATRIX SP	IKE DUPLI	CATE: 3417	566		3417567							
			MS	MSD								
	9	92563761001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Antimony	mg/L	ND ND	0.1	0.1	0.11	0.11	107	108	75-125	1	20	
Arsenic	mg/L	ND	0.1	0.1	0.098	0.099	98	99	75-125	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: HAMMOND AP-4

Pace Project No.: 92564042

Date: 10/14/2021 01:56 PM

MATRIX SPIKE & MATRIX	SPIKE DUPLIC	CATE: 3417		MOD	3417567							
Parameter	9 Units	2563761001 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Barium	mg/L	0.025	0.1	0.1	0.12	0.12	96	98	75-125	2	20	
Beryllium	mg/L	ND	0.1	0.1	0.089	0.090	89	90	75-125	2	20	
Boron	mg/L	ND	1	1	0.87	0.91	86	91	75-125	5	20	
Cadmium	mg/L	ND	0.1	0.1	0.10	0.10	103	103	75-125	0	20	
Chromium	mg/L	ND	0.1	0.1	0.091	0.092	91	92	75-125	1	20	
Cobalt	mg/L	0.0022J	0.1	0.1	0.091	0.092	88	90	75-125	2	20	
Lead	mg/L	ND	0.1	0.1	0.094	0.096	94	96	75-125	2	20	
Lithium	mg/L	ND	0.1	0.1	0.093	0.093	92	93	75-125	1	20	
Molybdenum	mg/L	ND	0.1	0.1	0.10	0.10	100	102	75-125	2	20	
Selenium	mg/L	ND	0.1	0.1	0.096	0.099	96	98	75-125	3	20	
Thallium	mg/L	ND	0.1	0.1	0.092	0.093	92	93	75-125	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:

HAMMOND AP-4

Pace Project No.:

92564042

QC Batch: QC Batch Method: 652379

EPA 7470A

Analysis Method:

EPA 7470A

Analysis Description:

7470 Mercury

Laboratory:

Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples:

92564042001, 92564042002

METHOD BLANK:

Matrix: Water

Associated Lab Samples:

92564042001, 92564042002

Blank Result

Reporting Limit

MDL

Analyzed

Qualifiers

Mercury

Mercury

Units mg/L

ND

0.00020

0.000078

10/13/21 10:39

LABORATORY CONTROL SAMPLE: Parameter

Parameter

3420818

Units

mg/L

Spike Conc.

0.0025

LCS Result

0.0023

LCS % Rec % Rec Limits

Qualifiers

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:

3420819

92563761002 Parameter

MS Spike

MSD Spike Conc.

MS

3420820

MS % Rec

93

MSD % Rec

80-120

% Rec

Max **RPD** Limits

RPD Qual

Mercury

Date: 10/14/2021 01:56 PM

Units Result

mg/L

Conc.

ND

0.0025 0.0025

Result 0.0022 Result 0.0015

MSD

86

59 75-125 37

20 M1,R1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

QUALITY CONTROL DATA

Project:

HAMMOND AP-4

Pace Project No.:

92564042

QC Batch:

650392

QC Batch Method:

SM 2540C-2011

Analysis Method:

SM 2540C-2011

Analysis Description:

2540C Total Dissolved Solids

Laboratory:

Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples:

Associated Lab Samples:

92564042001, 92564042002

METHOD BLANK: 3411236

92564042001, 92564042002

Matrix: Water

Blank Result Reporting Limit

Analyzed

Qualifiers

Total Dissolved Solids

Units mg/L

Units

mg/L

Units

mg/L

ND

10.0

10.0 10/03/21 11:38

LABORATORY CONTROL SAMPLE:

Parameter

Parameter

3411237

Spike Conc.

LCS Result

LCS % Rec % Rec Limits

Qualifiers

SAMPLE DUPLICATE: 3411239

Total Dissolved Solids

Parameter

92563761007 Result

181

1560

Dup Result

181

1580

387

RPD

0

97

MDL

Max **RPD**

10

10

90-111

Qualifiers

SAMPLE DUPLICATE: 3412138

Date: 10/14/2021 01:56 PM

Total Dissolved Solids

Parameter Units Total Dissolved Solids mg/L 92563761002 Result

Dup Result

RPD 2

Max RPD

Qualifiers

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: HAMMOND AP-4

Pace Project No.: 92564042

QC Batch: 650124

QC Batch Method:

Sulfate

Analysis Method:

EPA 300.0 Rev 2.1 1993

Analysis Description:

300.0 IC Anions

Laboratory:

Pace Analytical Services - Asheville

Associated Lab Samples: 92564042001, 92564042002

EPA 300.0 Rev 2.1 1993

METHOD BLANK: 3409716

Date: 10/14/2021 01:56 PM

Matrix: Water

Associated Lab Samples: 92564042001, 92564042002

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	ND	1.0	0.60	09/30/21 20:19	
Fluoride	mg/L	ND	0.10	0.050	09/30/21 20:19	
Sulfate	ma/l	ND	1.0	0.50	09/30/21 20:19	

LABORATORY CONTROL SAMPLE: 3409717 Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Chloride 94 mg/L 50 46.9 90-110 Fluoride mg/L 2.5 97 2.4 90-110 Sulfate 104 mg/L 50 51.9 90-110

MATRIX SPIKE & MATRIX SP	IKE DUPI	LICATE: 3409	718		3409719							
		92563761009	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	27.2	50	50	74.3	75.0	94	95	90-110	1	10	
Fluoride	mg/L	1.6	2.5	2.5	4.3	4.4	107	110	90-110	2	10	
Sulfate	mg/L	1670	50	50	1680	1680	26	13	90-110	0	10	M1

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 3409	720		3409721							
			MS	MSD								
		92563226014	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	ND	50	50	47.4	47.9	95	96	90-110	1	10	
Fluoride	mg/L	ND	2.5	2.5	2.5	2.5	98	100	90-110	1	10	
Sulfate	mg/L	ND	50	50	50.4	51.0	101	102	90-110	1	10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: HAMMOND AP-4

Pace Project No.: 92564042

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 10/14/2021 01:56 PM

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

R1 RPD value was outside control limits.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: HAMMOND AP-4

Pace Project No.: 92564042

Date: 10/14/2021 01:56 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
92564042001 92564042002	HGWC-117 HGWC-117A			_	
92564042001	HGWC-117	EPA 3010A	651397	EPA 6010D	651486
92564042002	HGWC-117A	EPA 3010A	651397	EPA 6010D	651486
92564042001	HGWC-117	EPA 3005A	651684	EPA 6020B	651759
92564042002	HGWC-117A	EPA 3005A	651684	EPA 6020B	651759
92564042001	HGWC-117	EPA 7470A	652379	EPA 7470A	652560
92564042002	HGWC-117A	EPA 7470A	652379	EPA 7470A	652560
92564042001	HGWC-117	SM 2540C-2011	650392		
92564042002	HGWC-117A	SM 2540C-2011	650392		
92564042001	HGWC-117	EPA 300.0 Rev 2.1 1993	650124		
92564042002	HGWC-117A	EPA 300.0 Rev 2.1 1993	650124		

Pace Analytical

Document Name:

Sample Condition Upon Receipt(SCUR)

Document No.:

Document Revised: October 28, 2020

F-CAR-CS-033-Rev.07

Page 1 of 2
Issuing Authority:
Pace Carolinas Quality Office

					Date:
son contacted:			Date/Tir	ne:	
NT NOTIFICATION/RESOLUTION				Lo	t ID of split containers:
MMENTS/SAMPLE DISCREPANCY					FIEID DATA REQUIRED? LITES LING
Trip Blank Custody Seals Present?	Yes	□No	Ďn/a	-	Field Data Required? ☐Yes ☐No
	□Yes	□No	MIA	11.	
Headspace in VOA Vials (>5-6mm)? Trip Blank Present?	□Yes	□ No	DINA	10. 11.	The state of the s
-Includes Date/Time/ID/Analysis Matrix:	W				
Sample Labels Match COC?	□Y#S	□No	□N/A	9.	
Dissolved analysis: Samples Field Filtered?	Yes	□No	DN/A	8.	
-Pace containers oseur Containers Intact?	Yes	□No	□N/A	7.	
Correct Containers Used? -Pace Containers Used?		□No □No	□N/A □N/A	6.	
Sufficient Volume?	Eves	□No	□N/A	5.	
Rush Turn Around Time Requested?	☐Yes	PNO	□N/A	4.	
Short Hold Time Analysis (<72 hr.)?	Yes	100	□N/A	3.	po (note on the little on the
Samples Arrived within Hold Time?	Ves	□No	□N/A	2.	A CONTRACTOR OF MARKET AND
Chain of Custody Present?	Elves	□No	□N/A	1,	
Yes No		, 141, 01 3	o foliack ille	1	including Hawaii and Puerto Rico)? Yes No Comments/Discrepancy:
er Temp Corrected (°C): A Regulated Soil (N/A, water sample) amples originate in a quarantine zone within the Unit	ed States: CA	NY or S	C Icheck ma	insl?	has begun Did samples originate from a foreign source (internationally,
1.6	7		-		Samples out of temp criteria. Samples on ice, cooling proces
er Temp: Correction Factor		,			Temp should be above freezing to 6°C
mometer:	Type of lo]Wet □	Blue	None
를 통하는 경험하게 보고 하는 것이 없어 없었다. 그 가는 것이 없다.	ble Bags	Mon		ther	Biological Tissue Frozen? Yes ☐No ☑N/A
					Date/Initials Person Examining Contents:
Commercial Prace	Othe	r: \[\sum \text{Yes} \]	□No		92564042
urier: Fed Ex UPS	USPS		□ci	ient	
/w 40 1 A	0 /				
Sample Condition Upon Receipt CHARLES				Proje	WO#: 92564042

Pace Analytical

Document Name: Sample Condition Upon Receipt(SCUR)

Document No.: F-CAR-CS-033-Rev.07 Document Revised: October 28, 2020 Page 2 of 2

Issuing Authority: Pace Carolinas Quality Office

*Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation samples.

Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC, LLHg

**Bottom half of box is to list number of bottles

Project # UO#: 92564042

PM: NMG

Due Date: 10/13/21

CLIENT: GA-GA Power

kem#	BP4U-125 mL Plastic Unpreserved (N/A) (CI-)	8P3U-250 mL Plastic Unpreserved (N/A)	BP2U-500 mL Plastic Unpreserved (N/A)	BP1U-1 liter Plastic Unpreserved (N/A)	BP4S-125 mL Plastic H2SO4 (pH < 2) (CI-)	BP3N-250 mL plastic HNO3 (pH < 2)	BP42-125 mL Plastic ZN Acetate & NaOH (>9)	BP4C-125 mL Plastic NaOH (pH > 12) (CI-)	WGFU-Wide-mouthed Glass jar Unpreserved	AG1U-1 liter Amber Unpreserved (N/A) (CI-)	AG1H-1 liter Amber HCl (pH < 2)	AG3U-250 mL Amber Unpreserved (N/A) (G-)	AG1S-1 liter Amber H2SO4 (pH < 2)	AG3S-250 mL Amber H2504 (pH < 2)	AG3A(DG3A)-250 mL Amber NH4CI (N/A)(CI-)	DG9H-40 mL VOA HC! (N/A)	VG9T-40 mL VOA Na2S2O3 (N/A)	VG9U-40 mL VOA Unp (N/A)	DG9P-40 mL VOA H3PO4 (N/A)	VOAK (6 vials per kit)-5035 kit (N/A)	V/GK (3 vials per kit)-VPH/Gas kit (N/A)	SPST-125 mL Sterile Plastic (N/A – lab)	SP2T-250 mL Sterile Plastic (N/A - lab)	BPIN	8P3A-250 mL Plastic (NH2)2504 (9.3-9.7)	AGOU-100 mL Amber Unpreserved vials (N/A)	VSGU-20 mL Scintillation vials (N/A)	DG9U-40 mL Amber Unpreserved vials (N/A)
1	1	1	1		1	V	1	1					1	1	1									2				
2		1	1		1	K	1	1					/	1	1									7				
3	1				1	1	1	1			/		1	1	1								hj	1				
4	1				/	/	1	1			1		1	1	1									/				
5	1				/		1	1			1		/	1	1									1				
6	1				1	1	1	/			1		1	1	1									1	1			
7	1				1	1	1	/					1	/	1									/	1			
8	1				1	1	1	1			1		/	/	1								N	1	1			
9	1				7	1	1	1			1		/	/	1									1	1			
10	1				1	1	1	1			1		1	1	1									1				
11	1				1	1	1	1			1		1	1	7									1	1			
12	1				1	7	1	7			1		/	7	1										7			
Sa	mple I	D	Туре	of Pro	eserva	ative	pH	lupon	_		ustn Date			g for n adju	_	_	lme pi	Sam eserv	ation		Amo		Pres	ervati	/e		Lot#	

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers.

Section A Required De

Address

Allania GA GA POWER

Copy To Geosyntec Contacts

Address Company Name

REGULATORY AGENCY

Page

0

Page 18 of 18

GROUND WATER

TSU NPDES

OTHER CCE DRINKING WATER Section 8
Required Project Information

Section C

Sauthern Co.

Report To ISCS Contacts

Entail To

SCS Contacts

CHAIN-OF-CUSTODY / Analytical Request Document

The Cham-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

		П	T		T	12	=	10	9	CD	7	100	O1	A	w	2	1	17EM #				Request	Phone	cilian 10
			e ⁽ⁱ⁾ i see (destrin) de minimo montante de la companya del companya de la companya de la companya del companya de la company		ADDITIONAL COMMENTS											HGWC-117A	HGWC-117	SAMPLE ID SAMPLE ID WPS (A-Z 0-97-7) Sample 10s MUST BE UNICIDE Chest Che	1.000001.00 1000001.00 1000000000000000	Section D Valid Matrix Codes Required Light Procedure MAXIBD SOF		Requested Due Date/TAT 10 Day	Ti di x	aca conlacts
		- -	- 5	35											-			구무중중요#		SODE SODE		Project Number	Project Name	Purchase Order No.
			AN MILLIAM	See S	REL						-		T			NY.	TW	MATRIX CODE (see va	o code	s to teft)		mber		Order N
			1	est	RIUDA	L	_	_				L	L		L	o	0	SAMPLE TYPE (G=GRA	B C=C	OMP)			Hamn	ia.
			1	Moment Hes	HED BY							1				5/27/21	9/27/21	DATE	COMPOSITE				Hammond AP-4	
	SAMP		Buch	Shir	RELINQUISHED BY I AFFILIATION						_	1	-		17.51	-	-	BMGT	SILE	COL			P.4	
PRINT N SIGNAT	LER NAM			hrlow	MOIL										-	d		E A	элюоми	COLLECTED				
PRINT Name of SAMPLER SIGNATURE of SAMPLER	SAMPLER NAME AND SIGNATURE		1/25	3/12	p						1							TIME	3180					
WPLE	GNAT		RA	2115016	DATE			_		-	Į.	_			-	23	13	SAMPLE TEMP AT COLLE	CTION					
2	URE	-	-63	2			П	-			+		П			in.	5	# OF CONTAINERS	-			Pace	Manager Pro	Reter
W.			400	1150	BWIL						-					N	12	Unpreserved		Γ		Pace Public 8	Dales .	Reterritor
Manus .	1	-	42	-	-					\mathcal{A}	-	3				ÇA	ω	H ₂ SO ₄		Pre			1	
No or			36	3						1	12				_			HCI NaOH		Preservatives		10839	Kevin Herring	
			3		Ą					t								Na ₂ S ₂ O ₃		dives			erring	
Kies			1	2	ACCEPTED BY / AFFILIATION				-	Ц	_						_	Methanol Other						
58			1	10-5	DBY		-		7			-				-		Analysis Tost	1	YIN				
1 48		-	T	1	/ AFF				7	1						×	ж	Chloride Fluoride Sulfate			Re			
DATE Signed (MM/DO/YY):			3	PAC	TA I		-	_	+	+	-		\dashv	_	_	×	×	Full App II and IV metals RAD 226/228			ques			
med TY):			1	Z.	N				\Box	一				-		×	×	TOS			sted /			
G		1	10	<u>_</u>						1			\Box							_	anah		Site	
2/62/150			120	10/12/2	DATE			1		+	1		7					index o metallic pu	-		Requested Analysis Filtered	STATE:	Site Location	TSU
2			3	16	tri I			1													ittere	ĬĔ.	tion	
3			4	1150	SWLL	-	-	1	-	+	-	-	\dashv		-						d (Y/N)	1		70
			(A)	9	m					1	1						-				S	GA	1	RCRA
Temp in	·c						1	_		1	-	_	_					Dander Chlores (VI)			717			
	-	+	+			-	+	-	-	-	-	-	+	-	-	-	-	Residual Chlonne (Y/N	,					
Received Ice (Y/I			1		SAN		1			l.			1		_			Pac						3
Custod	Ny	+	+		APLE						3	크			Trat			Pro						~
Sealed Co (Y/N)	oler				SAMPLE CONDITIONS	1					0/27/2021		The state of the s	1	1	pH 5.74	DA = 465	ect						THE
Samples II (Y/N)					TIONS						24				Samoio		72 K	Pace Project No./ Lab f.D.						OTHER CCE.

November 16, 2021

Joju Abraham Georgia Power-CCR 2480 Maner Road Atlanta, GA 30339

RE: Project: HAMMOND AP-4 RADS

Pace Project No.: 92564026

Dear Joju Abraham:

Enclosed are the analytical results for sample(s) received by the laboratory on September 29, 2021. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Greensburg

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Nicole D'Oleo

nicole.d'oleo@pacelabs.com

Micole D' oler

(704)875-9092 Project Manager

Enclosures

cc: Christine Hug, Geosyntec Consultants, Inc.

Kristen Jurinko

Thomas Kessler, Geosyntec

Whitney Law, Geosyntec Consultants

Noelia Muskus, Geosyntec Consultants

Ms. Lauren Petty, Southern Company

Nardos Tilahun, GeoSyntec

Dawit Yifru, Geosyntec Consultants, Inc.

CERTIFICATIONS

Project: HAMMOND AP-4 RADS

Pace Project No.: 92564026

Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417

Alabama Certification #: 41590 Arizona Certification #: AZ0734

Arkansas Certification

California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

Delaware Certification EPA Region 4 DW Rad

Florida/TNI Certification #: E87683 Georgia Certification #: C040 Florida: Cert E871149 SEKS WET

Guam Certification Hawaii Certification Idaho Certification Illinois Certification Indiana Certification Iowa Certification #: 391

Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221

Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: 2017020 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Missouri Certification #: 235 Montana Certification #: Cert0082 Nebraska Certification #: NE-OS-29-14

Nevada Certification #: PA014572018-1 New Hampshire/TNI Certification #: 297617 New Jersey/TNI Certification #: PA051

New Mexico Certification #: PA01457 New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249

Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

South Dakota Certification
Tennessee Certification #: 02867

Texas/TNI Certification #: T104704188-17-3 Utah/TNI Certification #: PA014572017-9 USDA Soil Permit #: P330-17-00091 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 9526 Washington Certification #: C868 West Virginia DEP Certification #: 143 West Virginia DHHR Certification #: 9964C

Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L

SAMPLE SUMMARY

Project: HAMMOND AP-4 RADS

Pace Project No.: 92564026

Lab ID	Sample ID	Matrix	Date Collected	Date Received
92564026001	HGWC-117	Water	09/27/21 15:26	09/29/21 11:50
92564026002	HGWC-117A	Water	09/27/21 13:47	09/29/21 11:50

SAMPLE ANALYTE COUNT

Project: HAMMOND AP-4 RADS

Pace Project No.: 92564026

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
92564026001	HGWC-117	EPA 9315	JJY	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	RMK	1	PASI-PA
92564026002	HGWC-117A	EPA 9315	JJY	1	PASI-PA
		EPA 9320	VAL	1	PASI-PA
		Total Radium Calculation	RMK	1	PASI-PA

PASI-PA = Pace Analytical Services - Greensburg

SUMMARY OF DETECTION

Project: HAMMOND AP-4 RADS

Pace Project No.: 92564026

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
92564026001	HGWC-117					
EPA 9315	Radium-226	0.0709 ± 0.0871 (0.177) C:79% T:NA	pCi/L		11/11/21 09:31	
EPA 9320	Radium-228	0.834 ± 0.403 (0.686) C:83% T:79%	pCi/L		11/08/21 11:14	
Total Radium Calculation	Total Radium	0.905 ± 0.490 (0.863)	pCi/L		11/15/21 16:33	
92564026002	HGWC-117A					
EPA 9315	Radium-226	0.191 ± 0.129 (0.219) C:84% T:NA	pCi/L		11/11/21 09:31	
EPA 9320	Radium-228	0.861 ± 0.494 (0.916) C:73% T:75%	pCi/L		11/11/21 11:10	
Total Radium Calculation	Total Radium	1.05 ± 0.623 (1.14)	pCi/L		11/15/21 16:33	

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: HAMMOND AP-4 RADS

Pace Project No.: 92564026

Sample: HGWC-117 PWS:	Lab ID: 925640 Site ID:	D26001 Collected: 09/27/21 15:26 Sample Type:	Received:	09/29/21 11:50	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Se	ervices - Greensburg		•		
Radium-226	EPA 9315	0.0709 ± 0.0871 (0.177) C:79% T:NA	pCi/L	11/11/21 09:31	13982-63-3	
	Pace Analytical So	ervices - Greensburg				
Radium-228	EPA 9320	0.834 ± 0.403 (0.686) C:83% T:79%	pCi/L	11/08/21 11:14	15262-20-1	
	Pace Analytical So	ervices - Greensburg				
Total Radium	Total Radium Calculation	$0.905 \pm 0.490 (0.863)$	pCi/L	11/15/21 16:33	7440-14-4	

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: HAMMOND AP-4 RADS

Pace Project No.: 92564026

Sample: HGWC-117A PWS:	Lab ID: 9256 Site ID:	4026002 Collected: 09/27/21 13:47 Sample Type:	Received:	09/29/21 11:50	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 9315	0.191 ± 0.129 (0.219) C:84% T:NA	pCi/L	11/11/21 09:3	1 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 9320	0.861 ± 0.494 (0.916) C:73% T:75%	pCi/L	11/11/21 11:10) 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	1.05 ± 0.623 (1.14)	pCi/L	11/15/21 16:3	3 7440-14-4	

QUALITY CONTROL - RADIOCHEMISTRY

Project: HAMMOND AP-4 RADS

Pace Project No.: 92564026

QC Batch: 468246

QC Batch Method: EPA 9315

Analysis Method:

EPA 9315

Analysis Description:

9315 Total Radium

Laboratory:

Pace Analytical Services - Greensburg

Associated Lab Samples: 92564026001, 92564026002

METHOD BLANK: 2260780

Matrix: Water

Associated Lab Samples:

92564026001, 92564026002

Parameter

Act ± Unc (MDC) Carr Trac

Units pCi/L Analyzed

Qualifiers

Radium-226

-0.0444 ± 0.0346 (0.179) C:69% T:NA

11/10/21 15:48

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

Project: HAMMOND AP-4 RADS

Pace Project No.: 92564026

QC Batch: 470825

Analysis Method: EPA 9320 QC Batch Method: EPA 9320 Analysis Description: 9320 Radium 228

> Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 92564026001, 92564026002

METHOD BLANK: 2272894 Matrix: Water

Associated Lab Samples: 92564026001, 92564026002

Act ± Unc (MDC) Carr Trac Units Analyzed Qualifiers Parameter Radium-228 0.934 ± 0.482 (0.855) C:70% T:80% pCi/L 11/11/21 11:10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: HAMMOND AP-4 RADS

Pace Project No.: 92564026

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Act - Activity

Date: 11/16/2021 11:48 AM

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval).

Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: HAMMOND AP-4 RADS

Pace Project No.: 92564026

Date: 11/16/2021 11:48 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
92564026001	HGWC-117	EPA 9315	468246		
92564026002	HGWC-117A	EPA 9315	468246		
92564026001	HGWC-117	EPA 9320	470825		
92564026002	HGWC-117A	EPA 9320	470825		
92564026001	HGWC-117	Total Radium Calculation	472681		
92564026002	HGWC-117A	Total Radium Calculation	472681		

Pace Analytical

Document Name: Sample Condition Upon Receipt(SCUR)

Document No.: F-CAR-CS-033-Rev.07 Document Revised: October 28, 2020 Page 1 of 2

Issuing Authority: Pace Carolinas Quality Office

Project Manager SCURF Review:			Date:	
rson contacted:		Date/Tir	e	
NT NOTIFICATION/RESOLUTION			Lot ID of split conta	ainers:
MMENTS/SAMPLE DISCREPANCY				Field Data Required? Yes No
Trip Blank Custody Seals Present?	□Yes □No	MN/A		
Trip Blank Present?	Yes No	DNA	11.	
-Includes Date/Time/ID/Analysis Matrix: Headspace in VOA Vials (>5-6mm)?		ENA	10.	
Sample Labels Match COC?	□ms □No	□n/a	9.	
Dissolved analysis: Samples Field Filtered?	Yes No	ØN/A	8.	
Containers Intact?	☑Yes ☐No	□N/A	7.	
-Pace Containers Used?	Yes No	□n/a □n/a	6.	
Sufficient Volume?	Elves □No	□N/A	5.	
Rush Turn Around Time Requested?	☐Yes ☐No	□N/A	4.	
Short Hold Time Analysis (<72 hr.)?	☐Yes ☐Ñò	□N/A	3.	
Samples Arrived within Hold Time?	Øves □No	□N/A	2.	
Chain of Custody Present?	No □No	□N/A	1.	
]Yes □No			including Hawaii	and Puerto Rico)?
ler Temp Corrected (°C): A Regulated Soil (N/A, water sample) samples originate in a quarantine zone within the Unit	ed States: CA, NY, or S	iC (check ma	has begun s)? Did samples orig	inate from a foreign source (internationally,
1.0	1	-	☐ Samples o	ut of temp criteria. Samples on ice, cooling process
IR Gun ID: Correction Factor Add/Subtract (°C Add/Subtract (°C	Type of Ice:			e above freezing to 6°C
rmometer: 0.20		Wet □		□Yes □No ☑N/A
king Material: Bubble Wrap Bub	oble Bags Non	eΠo	Date/Init	Biological Tissue Frozen?
	Intact? Yes	□No	L	9/29/11
urier: Fed Ex UPS Commercial Face	USPS Other:	□ci	nt	
GAlow	e/			
I Para Para Para I			COLECT #:	
Sample Condition Client Name:			roject#:	:92564026

Pace Analytical

Document Name: Sample Condition Upon Receipt(SCUR)

Document No.: F-CAR-CS-033-Rev.07 Document Revised: October 28, 2020 Page 2 of 2

> Issuing Authority: Pace Carolinas Quality Office

*Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation samples.

Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC, LLHg

**Bottom half of box is to list number of bottles

Project #

0#:92564026

PM: NMG

Due Date: 10/20/21

CLIENT: GA-GA Power

ttem#	BP4U-125 mL Plastic Unpreserved (N/A) (CI-)	BP3U-250 mL Plastic Unpreserved (N/A)	BP2U-500 mL Plastic Unpreserved (N/A)	BP1U-1 liter Plastic Unpreserved (N/A)	BP45-125 mL Plastic H2SO4 (pH < 2) (CI-)	BP3N-250 mL plastic HNO3 (pH < 2)	BP42-125 mL Plastic 2N Acetate & NaOH (>9)	BP4C-125 mL Plastic NaOH (pH > 12) (CI-)	WGFU-Wide-mouthed Glass jar Unpreserved	AG1U-1 liter Amber Unpreserved (N/A) (CI-)	AG1H-1 liter Amber HCl (pH < 2)	AG3U-250 mL Amber Unpreserved (N/A) (CI-)	AG1S-1 liter Amber H2SO4 (pH < 2)	AG3S-250 mL Amber H25O4 (pH < 2)	AG3A[DG3A]-250 mL Amber NH4CI (N/A)(CI-)	DG9H-40 mL VOA HC! (N/A)	VG9T-40 mL VOA Na2S2O3 (N/A)	VG9U-40 mL VOA Unp (N/A)	DG9P-40 mL VOA H3PO4 (N/A)	VOAK (6 vials per kit)-5035 kit (N/A)	V/GK (3 vials per kit)-VPH/Gas kit (N/A)	SP5T-125 mL Sterile Plastic (N/A – lab)	SP2T-250 mL Sterile Plastic (N/A - lab)	BPIN	BP3A-250 mL Plastic (NH2)2SO4 (9.3-9.7)	AGOU-100 mL Amber Unpreserved vials (N/A)	VSGU-20 mL Scintillation vials (N/A)	DG9U-40 mL Amber Unpreserved vials (N/A)
1	1	1	1		1	1	1	1			1		1	1	1									24				
2	1	1	1		1	X	1	1			1		1	1	1									2				
3	1				1	1	1	1			/		1	1	1													
4	1				1	1	/	/			/		1	/	1										1			
5	1				1	/	/	1			/		1	/	/									1	7			
6	/				1	1	1	/			1		/	/	/									1	1			
7	/				/	/	/	/					/	/	1								Ϊy	1	1			
8					/	1	/	1			1		/	1	1										1			
9	1				/	/	/	1			1		/	/	/									1	1			
10						/	1	1			1		1	1	1								1-14	1	1			
11						1	1	1			1		1	/	1									1	1			
12				1	1	7	1	7			1		1	1	1									7	7			

pH Adjustment Log for Preserved Samples										
Sample ID	Type of Preservative	pH upon receipt	Date preservation adjusted	Time preservation adjusted	Amount of Preservative added	Lot#				
					-					

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers.

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Section A Required Chart Promission	Section Required		ca Inte	maunon						tion C														Pag			of		
Company GA Power	Report T				-				Aner	ce into			em C	'n					_	7				1. 4	ğu.		Dr.		
Address Atlanta GA	Сору То	Ger	osynt	ec Coma	cts		-		Core	pany t	_		-151 0	-		_	- tu			1							-		
	-	-							Addr			_			_				_	RE	GUL	ATOR	Y AC	SENC	1				
Email To SCS Contacts	Purchase	e Order	Nn			_							4)							1	NPDES F GROUND W				W DAL	ATER		KING W	
Phone Fax				nmond A	0.4				Reim											1	F UST F RCRA F OTHER					RCCE	-		
Requested Due Date/TAT 10 Day				nmond A	5-4				Mann				Hern	ng						S	ite Lo	cation							
	Project h	umber							Pace	Polife	# 10	0839								1	s	TATE:	-	GA					
Section D Valid M	atrix Codes	1	I	_				_	_	_						-	Re	que	ste	d Ana	alysis	Filte	red (Y/N)					
Required Lies (to printing) MATRIX	CODE	to ten)	(AMC		COLL	ECTED					Pr	esen	valive	es		N/N			1	1		1							
WATER	WI WI	sapos	C=COMP)			оомроз	ATE	18	1	T	T	T	T	T	T		\neg	1	1	+	1	1	11	+	1	1			
PASIDLE		valid c		COMPOS	7	-	-	ECT					i			- 1			t	1					=				
SAMPLE ID SAMPLE	CL CL Wp	136	G=GRAB			1		Soll	S								fale	sle	1						1 8				
Are (-1.2-0.5-A)	68	1			1			A	NER						11	ost	Sul	36	1		11				1 8	2			
Sample IOs MUST BÉ UNIQUE PRAIA	05	CODE	TYPE					EMP	14	Ved						10	Fluonde Sulfale	DUE .			1	1		1	1 2	3			
2		R X	PLE				1	E	CO	ese	7.		_ <	2 0		alys	B FIL	602	270						1 2	3			
TEN		MATRIX	SAMPLE	DATE	TIME	DATE	TIME	SAMPLE TEMP AT COLLECTION	# OF CONTAINERS	Jupi	H ₂ SO ₄	호	NaOH	deth deth	le l	Analysis Tost	Chloride	-ul App and IV metals	200	2			li		Residua Chlonne (Y.N.	3			
1 HGWC-117		wi	G	9/27/21	15.26		Linking	22	-	2	3	1 1		- 2	H	H	0	- 130	-	-	\forall	+	\forall	+	1 12	Pac	e Project		
2 HGWC-117A		WT	G	9/27/21	الم المالية	-	1	23	-	2	3	+	+	+	+		÷	× >	+	X X	++	+	+	+	+-	+	p# =	0-65	5.66
3		T		1	13:4		1	1	H	Ħ	1	11	-	+-	\forall		Ĥ	+	+	4	++	+-	-	+	╁┼	+	PH ·	0.14	no le
4		T						+	\vdash	$\dagger\dagger$	+		+	+	$\dagger \dagger$		+	+	+	+	1	+		+	++	1 4	- Cast	391	mpie
5		-		1				1	\vdash	Ħ	+			+	\forall		\dashv	+	+	+	+	+		-	1	-			
6		T			-			1	1	\forall	1		1	+	T	1	\dashv	+	+	+	11	+	1	-	+	+	ΓJ		
7								-		Π				+	Н		\dashv	+	+	+		-	H	+	\vdash		2/27/2	004	
8		1								11	+	-	-		\Box		1	+	\dagger	+	11	\top	H	+	1	+ -	IZIIZ	UZI	
9									Г	П			1	P	П	H	=	1	1	+	11	1	H		\vdash	1		-	
10								T							\top	1	1	1	T	T		+	H		\vdash	+		-	
11													1	1			T	1	T	\top				1	+	+			
12										П							1	T	T	1	11			\top	\vdash	1		-	
ADDITIONAL COMMENTS		REL	THOU	IŞHED BY	AFFILIAT	ION	DAT	E		ПМЕ	1		A	CCE	PTED	BY	AFFI	LIATE	ON		D	ATE	7	IME		SAN	IPLE CONE	HTIONS	
	44	OM.	us	Mess	port	600	9/29	121	111	50	1	140		W.	11:0	~		PA	N		9/2	1/21	11	50		T	T	T^{-}	
	17.00	- 1	1:1		Pace		1777 - 1)/	140	1/1	7	Jan S	-	. 1			1		1		hin	14/75	1	(00)	-	+	1	-	
Tr. (Prince of the St. (Prince o	17		A 171	1	111-0		1-10	**	110	10	6	n	w	N.	1		1	~	7-		11/	#4	11	UU		+	-	+	
							-		ļ		-	-				/	U	*****					_			-	1		-
A STATE OF THE STA					SAMPLE	ED MANG	AND SIGN	IAT	100	-			-						_	_			L				-		
					-		ne of SAMI	-		1		-		17		1	عدا ا								n C	Received on Ice (Y/N)	Custody Sealed Cooler (Y/N)		(YAN)
							E of SAMI		7	no	2	3	-	114	-12	211	DAT	E Sig			20:			,	Temp in °C	eceiv Ice ()	Cush		mples (Y/)
							- w britis	ren	,	Mark San	30	9.1				i	15.00	mon		C	1	177	7/>	1	1 -	1 00	1 0		ro

·Face Analytical"

Quality Control Sample Performance Assessment

Test: Ra-226 Analyst: JJY Date: 10/26/2021 63152 DW Worklist: Matrix:

Method Blank Assessment	
MB Sample ID	2260780
MB concentration:	-0.044
M/B Counting Uncertainty:	0.034
MB MDC:	0.179
MB Numerical Performance Indicator:	-2.56
MB Status vs Numerical Indicator:	N/A
MB Status vs. MDC:	Pass

Laboratory Control Sample Assessment	LCSD (Y or N)?	Υ
	LCS63152	LCSD63152
Count Date:	11/10/2021	11/10/2021
Spike I.D.:	19-033	19-033
Decay Corrected Spike Concentration (pCi/mL):	24.032	24.032
Volume Used (mL):	0.10	0.10
Aliquot Volume (L, g, F):	0.513	0.517
Target Conc. (pCi/L, g, F):	4.681	4.650
Uncertainty (Calculated):	0.056	0.056
Result (pCi/L, g, F):		5.141
LCS/LCSD Counting Uncertainty (pCi/L, g, F):		0.630
Numerical Performance Indicator:	2.83	1.52
Percent Recovery:	117.02%	110.56%
Status vs Numerical Indicator:	N/A	N/A
Status vs Recovery:	Pass	Pass
Upper % Recovery Limits:		125%
Lower % Recovery Limits:	75%	75%

Duplicate Sample Assessment		
Sample I.D.:	LCS63152	92563753001
Duplicate Sample I.D.	LCSD63152	92563753001DUP
Sample Result (pCi/L, g, F):	5.478	0.001
Sample Result Counting Uncertainty (pCi/L, g, F):	0.549	0.060
Sample Duplicate Result (pCi/L, g, F):	5.141	0.135
Sample Duplicate Result Counting Uncertainty (pCi/L, g, F):	0.630	0.107
Are sample and/or duplicate results below RL?	NO	See Below ##
Duplicate Numerical Performance Indicator:	0.789	-2.135
(Based on the LCS/LCSD Percent Recoveries) Duplicate RPD:	5.68%	196.84%
Duplicate Status vs Numerical Indicator:	N/A	(N/A)
Duplicate Status vs RPD:	Pass	Fail
% RPD Limit:	25%	25%

Analyst Must Manually Enter All Fields Highlighted in Yellow.

Sample Matrix Spike Control Assessment		MS/MSD 1	MS/MSD 2
Sample Collection Date:			
Sample I.D.	1, 11		
Sample MS t.D.			
Sample MSD I.D.			
Spike I.D.:			
MS/MSD Decay Corrected Spike Concentration (pCi/mL):			
Spike Volume Used in MS (mL):			
Spike Volume Used in MSD (mL):			
MS Aliquot (L, g, F):	ł		
MS Target Conc.(pCi/L, g, F):	1		
MSD Aliquot (L, g, F):			
MSD Target Conc. (pCi/L, g, F):			
MS Spike Uncertainty (calculated):			
MSD Spike Uncertainty (calculated):	1		
Sample Result:			
Sample Result Counting Uncertainty (pCi/L, g, F):			
Sample Matrix Spike Result:			
Matrix Spike Result Counting Uncertainty (pCi/L, g, F):			
Sample Matrix Spike Duplicate Result:			
Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F): MS Numerical Performance Indicator:			
MSD Numerical Performance Indicator:			
MS Percent Recovery:	1		İ
MSD Percent Recovery:			
MS Status vs Numerical Indicator:			
MSD Status vs Numerical Indicator:			
MS Status vs Recovery:			
MSD Status vs Recovery:	ŧ		
MS/MSD Upper % Recovery Limits:			
MS/MSD Lower % Recovery Limits:			

Matrix Spike/Matrix Spike Duplicate Sample Assessment	
Sample I.D.	
Sample MS I.D. Sample MSD I.D.	
Sample Matrix Spike Result: Matrix Spike Result Counting Uncertainty (pCi/L, q, F):	
Sample Matrix Spike Duplicate Result: Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F):	
Duplicate Numerical Performance Indicator:	
(Based on the Percent Recoveries) MS/ MSD Duplicate RPD: MS/ MSD Duplicate Status vs Numerical Indicator:	
MS/ MSD Duplicate Status vs RPD: % RPD Limit:	

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Comments:

***Batch-must be re-prepped due to unacceptable precision
NAULTS LINDC, NA

Pace Analytical*

Quality Control Sample Performance Assessment

Test: Ra-228 Analyst: VAL Date: 11/4/2021

Worklist: 63439 Matrix: WT

Fail*

Method Blank Assessment

MB Status vs. MDC:

Laboratory Control Sample Assessment LCSD (Y or N)? LCS63439 LCSD63439 Count Date: 11/8/2021 11/8/2021 Spike I.D.: 21-029 21-029 Decay Corrected Spike Concentration (pCi/mL): 37.538 37.538 Volume Used (mL) 0.10 0.10 Aliquot Volume (L, g, F): 0.811 0.815 Target Conc. (pCi/L, g, F): 4.626 4.607 Uncertainty (Calculated): 0.227 0.226 Result (pCi/L, g, F) 4.616 5.769 LCS/LCSD 2 Sigma CSU (pCi/L, g, F): 1.009 1.203 Numerical Performance Indicator -0.02 1.86 Percent Recovery 99.79% 125.22% Status vs Numerical Indicator: N/A N/A Status vs Recovery: Pass Pass Upper % Recovery Limits: 135% 135% Lower % Recovery Limits: 60% 60%

Duplicate Sample Assessment		
Sample I.D.: Duplicate Sample I.D.	LCS63439 LCSD63439	Enter Duplicate sample IDs if
Sample Result (pCi/L, g, F):		other than
Sample Result 2 Sigma CSU (pCi/L, g, F):		LCS/LCSD in
Sample Duplicate Result (pCi/L, g, F): Sample Duplicate Result 2 Sigma CSU (pCi/L, g, F):	1.203	the space below.
Are sample and/or duplicate results below RL? Duplicate Numerical Performance Indicator:		
(Based on the LCS/LCSD Percent Recoveries) Duplicate RPD:	22.61%	
Duplicate Status vs Numerical Indicator:		
Duplicate Status vs RPD:		
% RPD Limit:	36%	i i

Analyst Must Manually Enter All Fields Highlighted in Yellow.

Sample Matrix Spike Control Assessment	MS/MSD 1	MS/MSD 2
Sample Collection Date:		
Sample I.D.		
Sample MS I.D.		
Sample MSD I.D.		
Spike i.D.:		
MS/MSD Decay Corrected Spike Concentration (pCi/mL):		
Spike Volume Used in MS (mL):		
Spike Volume Used in MSD (mL):		
MS Aliquot (L, g, F):		
MS Target Conc.(pCi/L, g, F):		
MSD Aliquot (L, g, F):		
MSD Target Conc. (pCi/L, g, F):		
MS Spike Uncertainty (calculated):		
MSD Spike Uncertainty (calculated):		
Sample Result:		
Sample Result 2 Sigma CSU (pCi/L, g, F):		
Sample Matrix Spike Result:		
Matrix Spike Result 2 Sigma CSU (pCi/L, g, F):		
Sample Matrix Spike Duplicate Result:		
Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F):		
MS Numerical Performance Indicator:		
MSD Numerical Performance Indicator:		
MS Percent Recovery:		
MSD Percent Recovery:		
MS Status vs Numerical Indicator: MSD Status vs Numerical Indicator:		
MSD Status vs Numerical indicator. MS Status vs Recovery:		
MSD Status vs Recovery:		
MS/MSD Upper % Recovery Limits:		
MS/MSD Lower % Recovery Limits:		

	Matrix Spike/Matrix Spike Duplicate Sample Assessment	
	Sample I.D.	
	Sample MS I.D.	
l	Sample MSD I.D.	
ı	Sample Matrix Spike Result:	
ı	Matrix Spike Result 2 Sigma CSU (pCi/L, g, F):	
l	Sample Matrix Spike Duplicate Result:	
ı	Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F):	
ı	Duplicate Numerical Performance Indicator:	
	(Based on the Percent Recoveries) MS/ MSD Duplicate RPD:	· •
	MS/ MSD Duplicate Status vs Numerical Indicator:	
	MS/ MSD Duplicate Status vs RPD:	. 1

% RPD Limit:

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Comments

12

Ra-228 NELAC DW2 Printed: 11/9/2021 9:49 AM

Ra-228_63439_W.xls Ra-228_63439_W (version 1).xls

^{*}If the lowest activity sample in this batch is greater than ten times the blank value, the blank is acceptable; otherwise this batch must be re-prepped.

Pace Analytical

Quality Control Sample Performance Assessment

Test: Ra-228
Analyst: VAL
Date: 11/9/2021
Worklist: 63439
Matrix: WT

Method Blank Assessment

MB Sample ID 2272694

MB concentration: 0.934

M/B 2 Sigma CSU: 0.482

MB MDC: 0.855

MB Numerical Performance Indicator: 3.60

MB Status vs Numerical Indicator: Fail*

MB Status vs MDC: See Comment*

Laboratory Control Sample Assessment	LCSD (Y or N)?	N
	LCS63439	LCSD63439
Count Date:	#N/A	#N/A
Spike t.D.;	#N/A	#N/A
Decay Corrected Spike Concentration (pCi/mi.):	#N/A	#N/A
Volume Used (mL):	to Prove plate in the first	#N/A
Aliquot Volume (L, g, F):		#N/A
Terget Conc. (pCi/L, g, F):	#N/A	#N/A
Uncertainty (Calculeted):	#N/A	#N/A
Result (pCi/L, g, F):	#N/A	#N/A
LCS/LCSD 2 Sigma CSU (pCi/L, g, F):	#N/A	
Numerical Performance Indicator:	#N/A	#N/A
Percent Recovery:	#N/A	#N/A
Status vs Numerical Indicator:	#N/A	#N/A
Status vs Recovery:	#N/A	#N/A
Upper % Recovery Limits:		#N/A
Lower % Recovery Limits:	#N/A	#N/A

Duplicate Sample Assessment		
Sample I.D.: Duolicate Samole I.D.		Enter Duplicate sample IDs if
Sample Result (pCi/L, g, F):		other than
Sample Result 2 Sigma CSU (pCi/L, g, F):		LCS/LCSD in
Sample Duplicate Result (pCi/L, g, F):		the space below.
Sample Duplicate Result 2 Sigma CSU (pCi/L, g, F):		
Are sample and/or duplicate results below RL?	See Below ##	
Duplicate Numerical Performance Indicator:		
Duplicate RPD:		hand taki handara taka da ba
Duplicate Status vs Numerical Indicator:		
Duplicate Status vs RPD:		
% RPD Limit: L		1

Analyst Must Manually Enter All Fields Highlighted in Yellow.

Sample Matrix Spike Control Assessment	MS/MSD 1	MS/MSD 2
Sample Collection Date:		
Sample I.D.		
Sample MS i.D.		da Water et er e
Sample MSD (.D.		
Spike I.D.;		
MS/MSD Decay Corrected Spike Concentration (pCi/mL);		
Spike Volume Used in MS (mL):	Partie and agreement	
Spike Volume Used in MSD (mL):		
MS Aliquot (L, g, F):		
MS Target Conc.(pCi/L, g, F):		
MSD Aliquot (L, g, F):		
MSD Target Conc. (pCi/L, g, F):		
MS Spike Uncertainty (calculated):		
MSD Spike Uncertainty (calculated):		
Sample Result: Sample Result 2 Sigma CSU (pCi/L, g, F):		
Sample Result 2 Signia CSO (pcvL, g, r).		
Matrix Spike Result 2 Sigma CSU (pCi/L, g, F):		
Sample Matrix Spike Dupitcate Result:		
Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F):		
MS Numerical Performance Indicator:		
MSD Numerical Performance Indicator:		
MS Percent Recovery:		
MSD Percent Recovery:		
MS Status vs Numerical Indicator:		
MSD Status vs Numericat Indicator:		
·MS Status vs Recovery:		
MSD Status vs Recovery:		
MS/MSD Upper % Recovery Limits:		
MS/MSD Lower % Recovery Limits:		

Matrix Spike/Matrix Spike Duplicate Sample Assessment	
Sample I.D.	
Sample MS LD.	<u>.</u>
Sample MSD i.D.	
Sample Matrix Spike Result:	VIII.
Metrix Spike Result 2 Sigme CSU (pCi/L, g, F):	
Sample Matrix Spike Duplicate Result:	****
Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F):	
Duplicate Numerical Performance Indicator:	
(Based on the Percent Recoveries) MS/ MSD Duplicate RPD:	
MS/ MSD Duplicate Status vs Numerical Indicator:	
MS/ MSD Duplicate Status vs RPD:	
% RPD Limit:	

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Comments

*The method blank result is below the reporting limit for this analysis and is acceptable.
#N/A

VALIDATION REPORTS

August 2021

180A Market Place Boulevard Knoxville, TN 37922 PH 865.330.0037 www.geosyntec.com

Memorandum

Date: November 18, 2021

To: Whitney Law

From: Kristoffer Henderson

CC: J. Caprio

Subject: Stage 2A Data Validation - Level II Data Deliverables - Pace

Analytical Services, LLC Project Numbers 92555497 and 92555501

SITE: Plant Hammond AP-4

INTRODUCTION

This report summarizes the findings of the Stage 2A data validation of fourteen aqueous samples, one field duplicate, one equipment blank and one field blank, collected 12-19 August 2021, as part of the Plant Hammond AP on-site sampling event.

The samples were analyzed at Pace Analytical Services Atlanta, Peachtree Corners, Georgia, for the following analytical tests:

- Calcium by United States Environmental Protection Agency (US EPA) Methods 3010A/6010D
- Metals by US EPA Methods 3005A/6020B
- Mercury by US EPA Method 7470A
- Total Dissolved Solids (TDS) by Standard Method 2540C

The samples were analyzed at Pace Analytical Services Asheville, North Carolina, for the following analytical test:

• Anions (Chloride, Fluoride and Sulfate) by US EPA Method 300.0

The samples were analyzed at Pace Analytical Services, LLC, Greensburg, Pennsylvania, for the following analytical tests:

- Radium-226 by US EPA Method 9315
- Radium-228 by US EPA Method 9320
- Total Radium by Calculation

EXECUTIVE SUMMARY

Based on the Stage 2A data validation covering the quality control (QC) parameters listed below and the information provided, the data as qualified are usable for meeting project objectives. Qualified data should be used within the limitation of the qualification.

The data were reviewed based on the pertinent methods referenced in the laboratory reports, professional and technical judgment, and the following documents:

- US EPA Region IV Data Validation Standard Operating Procedures (US EPA Region IV, September 2011);
- USEPA National Functional Guidelines for Inorganic Superfund Methods Data Review, November 2020 (EPA 542-R-20-006); and
- American National Standard, Verification and Validation of Radiological Data for use in Waste Management and Environmental Remediation, February 15, 2012 (ANSI/ANS-41.5-2012).

The following samples were analyzed and reported in the laboratory reports:

Laboratory ID	Client ID
92555497001	HGWA-47
92555497002	HGWA-48D
92555497003	HGWA-111
92555497004	HGWA-112
92555497005	HGWA-113
92555497006	HGWC-117A
92555497007	HGWC-102
92555497008	HGWC-105
92555497009	HGWC-107
92555497010	HGWC-109
92555497011	HGWC-118
92555497012	DUP-4
92555497013	HGWC-101
92555497014	HGWC-103
92555497015	FB-4
92555497016	EB-4
92555497017	HGWC-117

Laboratory ID	Client ID
92555501001	HGWA-47
92555501002	HGWA-48D
92555501003	HGWA-111
92555501004	HGWA-112
92555501005	HGWA-113
92555501006	HGWC-117A
92555501007	HGWC-102
92555501008	HGWC-105
92555501009	HGWC-107
92555501010	HGWC-109
92555501011	HGWC-118
92555501012	DUP-4
92555501013	HGWC-101
92555501014	HGWC-103
92555501015	FB-4
92555501016	EB-4
92555501017	HGWC-117

The samples were received within 0-6 degrees Celsius (°C). No sample preservation issues were noted by the laboratory.

The field pH data included in the laboratory report were not validated.

Plant Hammond AP Site Data Validation 18 November 2021 Page 3

1.0 METALS

The samples were analyzed for metals by US EPA methods 3010A/6010D and US EPA methods 3005A/6020B. (Mercury was evaluated separately in Section 2.0, below).

The areas of data review are listed below. A leading check mark (\checkmark) indicates an area of review in which the data were acceptable. A preceding crossed circle (\otimes) signifies areas where issues were raised during the course of the validation review and should be considered to determine any impact on data quality and usability.

- ✓ Overall Assessment
- ✓ Holding Time
- ✓ Method Blank
- ✓ Matrix Spike/Matrix Spike Duplicate
- ✓ Laboratory Control Sample
- ✓ Equipment Blank
- ✓ Field Blank
- ⊗ Field Duplicate
- ✓ Sensitivity
- ✓ Electronic Data Deliverables Review

1.1 Overall Assessment

The metals data reported in this data set are considered usable for meeting project objectives. The results are considered valid; the analytical completeness defined as the ratio of the number of valid analytical results (valid analytical results include values qualified as estimated) to the total number of analytical results requested on samples submitted for this analysis, for this data set is 100%.

1.2 Holding Time

The holding time for the metals analysis of a water sample is 180 days from sample collection to analysis. The holding times were met for the sample analyses.

1.3 Method Blank

Method blanks were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). Four method blanks were reported (batches 641241, 642523, 641254 and 642521). Metals were not detected in the method blanks above the method detection limits (MDLs), with the following exception.

Antimony was detected in the method blank in batch 641254 at an estimated concentration greater than the MDL and less than the reporting limit (RL). Since antimony was not detected in the associated samples, no qualifications were applied to the data.

1.4 <u>Matrix Spike/Matrix Spike Duplicate (MS/MSD)</u>

MS/MSDs were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). Three sample set specific MS/MSD pairs were reported using samples HGWA-47, HGWA-48D and HGWC-117. The relative percent difference (RPD) results were within the laboratory specified acceptance criteria.

The recoveries of calcium in the MS/MSD pair using sample HGWA-47 were low and outside of the laboratory specified acceptance criteria. Since the calcium concentration in sample HGWA-47 was greater than four times the spiked concentration, no qualifications were applied to the data based on the MS/MSD recovery results.

One batch MS/MSD pair was also reported. Since these were batch QC, the results do not affect the samples in this data set and qualifications were not applied to the data based on the MS/MSD recovery results.

1.5 <u>Laboratory Control Sample (LCS)</u>

LCSs were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). Four LCSs were reported. The recovery results were within the laboratory specified acceptance criteria.

1.6 **Equipment Blank**

One equipment blank was collected with the sample set, EB-4. Metals were not detected in the equipment blank above the MDLs.

1.7 Field Blank

One field blank was collected with the sample set, FB-4. Metals were not detected in the field blank above the MDLs.

1.8 Field Duplicate

One field duplicate sample was collected with the sample set, DUP-4. Acceptable precision (RPD \leq 20% or the difference between the concentrations < RL) was demonstrated between the field duplicate and the original sample, HGWC-109, with the following exception.

Lithium was not detected in HGWC-109 and was detected in DUP-4 at an estimated concentration greater than the MDL and less than the RL, resulting in a noncalculable RPD. Therefore, the non-detect lithium result in HGWC-109 was UJ qualified as estimated less than the MDL and the lithium concentration in DUP-4 was J qualified as estimated.

Page 5

Sample	Analyte	Laboratory Result (mg/L)	Laboratory Flag	RPD	Validation Result (mg/L)	Validation Qualifier*	Reason Code*
HGWC-109	Lithium	0.00073	U	NC	0.00073	UJ	7
DUP-4	Lithium	0.00077	J		0.00077	J	7

mg/L-milligram per liter

J-estimated concentration greater than the MDL and less than the RL

U-not detected at or above the MDL

NC-not calculable

1.9 Sensitivity

The samples were reported to the MDLs. No elevated non-detect results were reported.

1.10 Electronic Data Deliverable (EDD) Review

The results and sample IDs in the EDD were reviewed against the information provided by the associated level II report at a minimum of 20% as part of the data validation process. No discrepancies were identified between the level II report and the EDD.

2.0 MERCURY

The samples were analyzed for mercury by US EPA method 7470A.

The areas of data review are listed below. A leading check mark (\checkmark) indicates an area of review in which the data were acceptable. A preceding crossed circle (\otimes) signifies areas where issues were raised during the course of the validation review and should be considered to determine any impact on data quality and usability.

- ✓ Overall Assessment
- ✓ Holding Time
- ⊗ Method Blank
- ✓ Matrix Spike/Matrix Spike Duplicate
- ✓ Laboratory Control Sample
- ✓ Equipment Blank
- ✓ Field Blank
- ✓ Field Duplicate
- ✓ Sensitivity
- ✓ Electronic Data Deliverables Review

2.1 Overall Assessment

The mercury data reported in this data set are considered usable for meeting project objectives. The results are considered valid; the analytical completeness defined as the ratio of the number of

Plant Hammond AP Site Data Validation 18 November 2021 Page 6

valid analytical results (valid analytical results include values qualified as estimated) to the total number of analytical results requested on samples submitted for this analysis, for this data set is 100%.

2.2 Holding Time

The holding time for mercury analysis of a water sample is 28 days from sample collection to analysis. The holding times were met for the sample analyses.

2.3 Method Blank

Method blanks were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). One method blank was reported (batch 643221).

Mercury was detected in the method blank in batch 643221 at an estimated concentration greater than the MDL and less than the RL. Therefore, the estimated mercury concentrations in the associated samples were U qualified as not detected at the RL.

Sample	Analyte	Laboratory Result (mg/L)	Laboratory Flag	Validation Result (mg/L)	Validation Qualifier	Reason Code
HGWA-47	Mercury	0.000081	J B	0.00020	U	3
HGWA-48D	Mercury	0.00018	J B	0.00020	U	3
HGWA-112	Mercury	0.00011	J B	0.00020	U	3
HGWC-117A	Mercury	0.000094	JВ	0.00020	U	3
HGWC-102	Mercury	0.00010	JВ	0.00020	U	3
HGWC-107	Mercury	0.000084	JВ	0.00020	U	3
HGWC-109	Mercury	0.000080	JВ	0.00020	U	3
HGWC-118	Mercury	0.000081	JВ	0.00020	U	3
HGWC-101	Mercury	0.000099	JВ	0.00020	U	3
FB-4	Mercury	0.00012	JВ	0.00020	U	3
EB-4	Mercury	0.00012	J B	0.00020	U	3

mg/L-milligrams per liter

J-estimated concentration greater than the MDL and less than the RL

B-laboratory flag indicating analyte was detected in the method blank

2.4 Matrix Spike/Matrix Spike Duplicate

MS/MSDs were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). One sample set specific MS/MSD pair was reported using sample HGWA-47. The recovery and RPD results were within the laboratory specified acceptance criteria.

2.5 <u>Laboratory Control Sample</u>

LCSs were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). One LCS was reported. The recovery result was within the laboratory specified acceptance criteria.

2.6 Equipment Blank

One equipment blank was collected with the sample set, EB-01.

Mercury was detected in the equipment blank at an estimated concentration greater than the MDL and less than the RL. Since the mercury concentration in the equipment blank was U qualified due to method blank contamination and based on professional and technical judgment, no additional qualifications were applied to the data.

2.7 Field Blank

One field blank was collected with the sample set, FB-4.

Mercury was detected in the field blank at an estimated concentration greater than the MDL and less than the RL. Since the mercury concentration in the field blank was U qualified due to method blank contamination and based on professional and technical judgment, no additional qualifications were applied to the data.

2.8 Field Duplicate

One field duplicate sample was collected with the sample set, DUP-4. Acceptable precision (RPD $\leq 20\%$ or the difference between the concentrations < RL) was demonstrated between the field duplicate and the original sample, HGWC-109.

2.9 Sensitivity

The samples were reported to the MDL. No elevated non-detect results were reported.

2.10 Electronic Data Deliverable Review

The results and sample IDs in the EDD were reviewed against the information provided by the associated level II report at a minimum of 20% as part of the data validation process. No discrepancies were identified between the level II report and the EDD.

Plant Hammond AP Site Data Validation 18 November 2021 Page 8

3.0 WET CHEMISTRY

The samples were analyzed for TDS by Standard method 2540C and anions by US EPA method 300.0.

The areas of data review are listed below. A leading check mark (\checkmark) indicates an area of review in which the data were acceptable. A preceding crossed circle (\otimes) signifies areas where issues were raised during the course of the validation review and should be considered to determine any impact on data quality and usability.

- ✓ Overall Assessment
- ✓ Holding Times
- ✓ Method Blank
- ✓ Matrix Spike/Matrix Spike Duplicate
- ✓ Laboratory Control Sample
- ✓ Laboratory Duplicate
- ✓ Equipment Blank
- ✓ Field Blank
- ✓ Field Duplicate
- ✓ Sensitivity
- ✓ Electronic Data Deliverables Review

3.1 Overall Assessment

The wet chemistry data reported in this data set are considered usable for meeting project objectives. The results are considered valid; the analytical completeness defined as the ratio of the number of valid analytical results (valid analytical results include values qualified as estimated) to the total number of analytical results requested on samples submitted for these analyses, for this data set is 100%.

3.2 Holding Times

The holding time for the TDS analysis of a water sample is 7 days from sample collection to analysis. The holding time for the anions (chloride, fluoride, and sulfate) analysis of a water sample is 28 days from sample collection to analysis. The holding times were met for the sample analyses.

3.3 Method Blank

Method blanks were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). Three method blanks were reported for TDS (batches 640931, 641466 and 642674) and six method blanks were reported for the anions (batches 641753, 641754, 641887, 641893, 642138 and 643305). The wet chemistry parameters were not detected in the method blanks above the MDLs.

3.4 Matrix Spike/Matrix Spike Duplicate

MS/MSDs were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). One sample set specific MS/MSD pair was reported for the anions using sample HGWA-43D. The recovery and RPD results were within the laboratory specified acceptance criteria.

Batch MS/MSD pairs were also reported for the anions. Since these were batch QC, the results do not affect the samples in this data set and qualifications were not applied to the data.

3.5 Laboratory Control Sample

LCSs were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). LCSs were reported for each analysis and batch. The recovery results were within the laboratory specified acceptance criteria.

3.6 <u>Laboratory Duplicate</u>

One sample set specific laboratory duplicate was reported for TDS using sample HGWA-1. The RPD result was within the laboratory specified acceptance criteria.

Batch laboratory duplicates were also reported for TDS. Since these were batch QC, the results do not affect the samples in this data set and qualifications were not applied to the data.

3.7 Equipment Blank

One equipment blank was collected with the sample set, EB-4. The wet chemistry parameters were not detected in the equipment blank above the MDLs.

3.8 Field Blank

One field blank was collected with the sample set, FB-4. The wet chemistry parameters were not detected in the field blank above the MDLs.

3.9 Field Duplicate

One field duplicate sample was collected with the sample set, DUP-4. Acceptable precision (RPD \leq 20% or the difference between the concentrations < RL) was demonstrated between the field duplicate and the original sample, HGWC-109.

3.10 Sensitivity

The samples were reported to the MDLs. No elevated non-detect results were reported.

3.11 <u>Electronic Data Deliverable Review</u>

The results and sample IDs in the EDD were reviewed against the information provided by the associated level II report at a minimum of 20% as part of the data validation process. No discrepancies were identified between the level II report and the EDD.

4.0 RADIOCHEMISTRY

The samples were analyzed for radium-226 by US EPA method 9315, radium-228 by US EPA method 9320 and total radium by calculation.

The areas of data review are listed below. A leading check mark (\checkmark) indicates an area of review in which the data were acceptable. A preceding crossed circle (\otimes) signifies areas where issues were raised during the course of the validation review and should be considered to determine any impact on data quality and usability.

- ✓ Overall Assessment
- ✓ Holding Times
- ✓ Method Blank
- ✓ Matrix Spike/Matrix Spike Duplicate
- ✓ Laboratory Control Sample
- ✓ Laboratory Duplicate
- ✓ Tracers and Carriers
- ✓ Equipment Blank
- ✓ Field Blank
- ✓ Field Duplicate
- ✓ Sensitivity
- ✓ Electronic Data Deliverables Review

4.1 Overall Assessment

The radium-226 and radium-228 data reported in this data set are considered usable for meeting project objectives. The results are considered valid; the analytical completeness defined as the ratio

Plant Hammond AP Site Data Validation 18 November 2021 Page 11

of the number of valid analytical results (valid analytical results include values qualified as estimated) to the total number of analytical results requested on samples submitted for this analysis, for this data set is 100%.

4.2 Holding Times

The holding times for the radium-226 and radium-228 analyses of a water sample are 180 days from sample collection to analysis. The holding times were met for the sample analyses.

4.3 Method Blank

Method blanks were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). Three method blanks were reported for the radium-226 data (batches 463426, 463380 and 463378). Three method blanks were reported for the radium-228 data (batches 461961, 463379 and 463377). Radium-226 and radium-228 were not detected in the method blanks above the minimum detectable concentrations (MDCs).

4.4 <u>Matrix Spike/Matrix Spike Duplicate</u>

MS/MSD pairs were not reported with the data.

4.5 <u>Laboratory Control Sample</u>

LCSs were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). Three LCS/LCS duplicate (LCSD) pairs were reported for radium-226. Four LCS/LCSD pairs were reported for radium-228. The recovery and replicate error ratio (RER) [1 sigma (1σ)] results were within the laboratory specified acceptance criteria.

4.6 <u>Laboratory Duplicate</u>

Two sample set specific laboratory duplicates were reported for radium-226 using samples HGWC-102 and DUP-4. The RER results were within the laboratory specified acceptance criteria.

One batch laboratory duplicate was also reported for radium-226. Since these were batch QC, the results do not affect the samples in this data set and qualifications were not applied to the data.

4.7 Tracers and Carriers

Carriers were reported for the radium-226 and radium-228 analyses and a tracer was reported for the radium-228 analyses. The recovery results were within the laboratory specified acceptance criteria.

4.8 **Equipment Blank**

One equipment blank was collected with the sample set, EB-4. Radium-226 and Radium-228 were not detected in the equipment blank above the MDCs.

4.9 Field Blank

One field blank was collected with the sample set, FB-4. Radium-226 and Radium-228 were not detected in the field blank above the MDCs.

4.10 Field Duplicate

One field duplicate sample was collected with the sample set, DUP-4. Acceptable precision (RER (1σ) < 3) was demonstrated between the field duplicate and the original sample, HGWC-109.

4.11 **Sensitivity**

The samples were reported to the MDCs. No elevated non-detect results were reported.

4.12 Electronic Data Deliverable Review

The results and sample IDs in the EDD were reviewed against the information provided by the associated level II report at a minimum of 20% as part of the data validation process. No discrepancies were identified between the level II report and the EDD.

* * * * *

ATTACHMENT 1 DATA VALIDATION QUALIFIER DEFINITIONS AND INTERPRETATION KEY

Assigned by Geosyntec's Data Validation Team

DATA QUALIFIER DEFINITIONS

- U The analyte was analyzed for but was not detected above the reported sample quantitation limit. Upon application of the U qualifier to a reported result, the definition changes to "not detected at or above the reported result".
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- J+ The analyte was positively identified; however, the associated numerical value is likely to be higher than the concentration of the analyte in the sample due to positive bias of associated QC or calibration data or attributable to matrix interference.
- J- The analyte was positively identified; however, the associated numerical value is likely to be lower than the concentration of the analyte in the sample due to negative bias of associated QC or calibration data or attributable to matrix interference.
- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

DVR 8_21 AP-4 Final Review: JK Caprio 12/13/2021

ATTACHMENT 2 DATA VALIDATION REASON CODES Assigned by Geosyntec's Data Validation Team

Valid Value	Description
1	Preservation requirement not met
2	Analysis holding time exceeded
3	Blank contamination (i.e., method, trip, equipment, etc.)
4	Matrix spike/matrix spike duplicate recovery or RPD outside limits
5	LCS or RPD recovery outside limits (LCS/LCSD)
6	Surrogate recovery outside limits
7	Field Duplicate RPD exceeded
8	Serial dilution percent difference exceeded
9	Calibration criteria not met
10	Linear range exceeded
11	Internal standard criteria not met
12	Lab duplicates RPD exceeded
13	Other
14	Lab flag removed or modified: no validation qualification required

LCS - Laboratory Control Sample LCSD - Laboratory Control Sample duplicate

RPD - Relative percent difference

September 2021

180A Market Place Boulevard Knoxville, TN 37922 PH 865.330.0037 www.geosyntec.com

Memorandum

Date: November 18, 2021

To: Whitney Law

From: Kristoffer Henderson

CC: J. Caprio

Subject: Stage 2A Data Validation - Level II Data Deliverables - Pace

Analytical Services, LLC Project Numbers 92564026 and 92564042

SITE: Plant Hammond AP-4

INTRODUCTION

This report summarizes the findings of the Stage 2A data validation of two aqueous samples collected 27 September 2021, as part of the Plant Hammond AP on-site sampling event.

The samples were analyzed at Pace Analytical Services Atlanta, Peachtree Corners, Georgia, for the following analytical tests:

- Calcium by United States Environmental Protection Agency (US EPA) Methods 3010A/6010D
- Metals by US EPA Methods 3005A/6020B
- Mercury by US EPA Method 7470A
- Total Dissolved Solids (TDS) by Standard Method 2540C

The samples were analyzed at Pace Analytical Services Asheville, North Carolina, for the following analytical test:

• Anions (Chloride, Fluoride and Sulfate) by US EPA Method 300.0

The samples were analyzed at Pace Analytical Services, LLC, Greensburg, Pennsylvania, for the following analytical tests:

- Radium-226 by US EPA Method 9315
- Radium-228 by US EPA Method 9320
- Total Radium by Calculation

EXECUTIVE SUMMARY

Based on the Stage 2A data validation covering the quality control (QC) parameters listed below and the information provided, the data as qualified are usable for meeting project objectives. Qualified data should be used within the limitation of the qualification.

The data were reviewed based on the pertinent methods referenced in the laboratory reports, professional and technical judgment, and the following documents:

- US EPA Region IV Data Validation Standard Operating Procedures (US EPA Region IV, September 2011);
- USEPA National Functional Guidelines for Inorganic Superfund Methods Data Review, November 2020 (EPA 542-R-20-006); and
- American National Standard, Verification and Validation of Radiological Data for use in Waste Management and Environmental Remediation, February 15, 2012 (ANSI/ANS-41.5-2012).

The following samples were analyzed and reported in the laboratory reports:

Laboratory ID	Client ID
92564026001	HGWC-117
92564026002	HGWC-117A

Laboratory ID	Client ID
92564042001	HGWC-117
92564042002	HGWC-117A

The samples were received within 0-6 degrees Celsius (°C). No sample preservation issues were noted by the laboratory.

The field pH data included in the laboratory report were not validated.

Incorrect error corrections were observed on the chain of custody (COC), instead of the proper procedure of a single strike through, correction, and initials and date of person making the corrections.

1.0 METALS

The samples were analyzed for metals by US EPA methods 3010A/6010D and US EPA methods 3005A/6020B. (Mercury was evaluated separately in Section 2.0, below).

The areas of data review are listed below. A leading check mark (\checkmark) indicates an area of review in which the data were acceptable. A preceding crossed circle (\otimes) signifies areas where issues were raised during the course of the validation review and should be considered to determine any impact on data quality and usability.

Plant Hammond AP Site Data Validation 18 November 2021 Page 3

- ✓ Overall Assessment
- ✓ Holding Time
- ✓ Method Blank
- ✓ Matrix Spike/Matrix Spike Duplicate
- ✓ Laboratory Control Sample
- ✓ Sensitivity
- ✓ Electronic Data Deliverables Review

1.1 Overall Assessment

The metals data reported in this data set are considered usable for meeting project objectives. The results are considered valid; the analytical completeness defined as the ratio of the number of valid analytical results (valid analytical results include values qualified as estimated) to the total number of analytical results requested on samples submitted for this analysis, for this data set is 100%.

1.2 **Holding Time**

The holding time for the metals analysis of a water sample is 180 days from sample collection to analysis. The holding times were met for the sample analyses.

1.3 Method Blank

Method blanks were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). Two method blanks were reported (batches 651397 and 651684). Metals were not detected in the method blanks above the method detection limits (MDLs).

1.4 Matrix Spike/Matrix Spike Duplicate (MS/MSD)

MS/MSDs were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). Two batch MS/MSD pairs were reported. Since these were batch QC, the results do not affect the samples in this data set and qualifications were not applied to the data based on the MS/MSD recovery results.

1.5 Laboratory Control Sample (LCS)

LCSs were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). Two LCSs were reported. The recovery results were within the laboratory specified acceptance criteria.

1.6 Sensitivity

The samples were reported to the MDLs. No elevated non-detect results were reported.

1.7 Electronic Data Deliverable (EDD) Review

The results and sample IDs in the EDD were reviewed against the information provided by the associated level II report at a minimum of 20% as part of the data validation process. No discrepancies were identified between the level II report and the EDD.

2.0 MERCURY

The samples were analyzed for mercury by US EPA method 7470A.

The areas of data review are listed below. A leading check mark (\checkmark) indicates an area of review in which the data were acceptable. A preceding crossed circle (\otimes) signifies areas where issues were raised during the course of the validation review and should be considered to determine any impact on data quality and usability.

- ✓ Overall Assessment
- ✓ Holding Time
- ✓ Method Blank
- ✓ Matrix Spike/Matrix Spike Duplicate
- ✓ Laboratory Control Sample
- ✓ Sensitivity
- ✓ Electronic Data Deliverables Review

2.1 Overall Assessment

The mercury data reported in this data set are considered usable for meeting project objectives. The results are considered valid; the analytical completeness defined as the ratio of the number of valid analytical results (valid analytical results include values qualified as estimated) to the total number of analytical results requested on samples submitted for this analysis, for this data set is 100%.

2.2 Holding Time

The holding time for mercury analysis of a water sample is 28 days from sample collection to analysis. The holding times were met for the sample analyses.

2.3 Method Blank

Method blanks were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). One method blank was reported (batch 652379). Mercury was not detected in the method blank above the MDL.

2.4 <u>Matrix Spike/Matrix Spike Duplicate</u>

MS/MSDs were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). One batch MS/MSD pair was reported. Since these were batch QC, the results do not affect the samples in this data set and qualifications were not applied to the data based on the MS/MSD recovery results.

2.5 <u>Laboratory Control Sample</u>

LCSs were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). One LCS was reported. The recovery result was within the laboratory specified acceptance criteria.

2.6 Sensitivity

The samples were reported to the MDL. No elevated non-detect results were reported.

2.7 Electronic Data Deliverable Review

The results and sample IDs in the EDD were reviewed against the information provided by the associated level II report at a minimum of 20% as part of the data validation process. No discrepancies were identified between the level II report and the EDD.

3.0 WET CHEMISTRY

The samples were analyzed for TDS by Standard method 2540C and anions by US EPA method 300.0.

The areas of data review are listed below. A leading check mark (\checkmark) indicates an area of review in which the data were acceptable. A preceding crossed circle (\otimes) signifies areas where issues were raised during the course of the validation review and should be considered to determine any impact on data quality and usability.

- ✓ Overall Assessment
- ✓ Holding Times
- ✓ Method Blank
- ✓ Matrix Spike/Matrix Spike Duplicate
- ✓ Laboratory Control Sample
- ✓ Laboratory Duplicate
- ✓ Sensitivity
- ✓ Electronic Data Deliverables Review

3.1 Overall Assessment

The wet chemistry data reported in this data set are considered usable for meeting project objectives. The results are considered valid; the analytical completeness defined as the ratio of the number of valid analytical results (valid analytical results include values qualified as estimated) to the total number of analytical results requested on samples submitted for these analyses, for this data set is 100%.

3.2 Holding Times

The holding time for the TDS analysis of a water sample is 7 days from sample collection to analysis. The holding time for the anions (chloride, fluoride, and sulfate) analysis of a water sample is 28 days from sample collection to analysis. The holding times were met for the sample analyses.

3.3 Method Blank

Method blanks were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). One method blank was reported for TDS (batch 650392) and one method blank was reported for the anions (batch 650124). The wet chemistry parameters were not detected in the method blanks above the MDLs.

3.4 <u>Matrix Spike/Matrix Spike Duplicate</u>

MS/MSDs were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). Two batch MS/MSD pairs were reported for the anions. Since these were batch QC, the results do not affect the samples in this data set and qualifications were not applied to the data.

3.5 <u>Laboratory Control Sample</u>

LCSs were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). LCSs were reported for each analysis and batch. The recovery results were within the laboratory specified acceptance criteria.

3.6 <u>Laboratory Duplicate</u>

Two batch laboratory duplicates were reported for TDS. Since these were batch QC, the results do not affect the samples in this data set and qualifications were not applied to the data.

3.7 <u>Sensitivity</u>

The samples were reported to the MDLs. No elevated non-detect results were reported.

3.8 Electronic Data Deliverable Review

The results and sample IDs in the EDD were reviewed against the information provided by the associated level II report at a minimum of 20% as part of the data validation process. No discrepancies were identified between the level II report and the EDD.

4.0 RADIOCHEMISTRY

The samples were analyzed for radium-226 by US EPA method 9315, radium-228 by US EPA method 9320 and total radium by calculation.

The areas of data review are listed below. A leading check mark (\checkmark) indicates an area of review in which the data were acceptable. A preceding crossed circle (\otimes) signifies areas where issues were raised during the course of the validation review and should be considered to determine any impact on data quality and usability.

- ✓ Overall Assessment
- ✓ Holding Times
- ⊗ Method Blank
- ✓ Matrix Spike/Matrix Spike Duplicate
- ✓ Laboratory Control Sample
- ✓ Laboratory Duplicate
- ✓ Tracers and Carriers
- ✓ Sensitivity
- ✓ Electronic Data Deliverables Review

4.1 Overall Assessment

The radium-226 and radium-228 data reported in this data set are considered usable for meeting project objectives. The results are considered valid; the analytical completeness defined as the ratio of the number of valid analytical results (valid analytical results include values qualified as estimated) to the total number of analytical results requested on samples submitted for this analysis, for this data set is 100%.

4.2 Holding Times

The holding times for the radium-226 and radium-228 analyses of a water sample are 180 days from sample collection to analysis. The holding times were met for the sample analyses.

4.3 Method Blank

Method blanks were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). One method blank was reported for the radium-226 data (batch 468246). One method blank was reported for the radium-228 data (batch 470825). Radium-226 was not detected in the method blank above the minimum detectable concentrations (MDCs).

Radium-228 (0.934 pCi/L) was detected in the method blank in batch 470825 at a concentration greater than the MDC. Therefore, the radium-228 and total radium concentrations in sample HGWC-117 were U qualified as not detected at the reported concentrations.

Sample	Analyte	Laboratory Result (pCi/L)	Laboratory Flag	Validation Result (pCi/L)	Validation Qualifier*	Reason Code**
HGWC-117	Radium-228	0.834	NA	0.834	U	3
HGWC-117	Combined Radium 226 + 228	0.905	NA	0.905	U	3

pCi/L-picocuries per liter

NA-not applicable

4.4 <u>Matrix Spike/Matrix Spike Duplicate</u>

MS/MSD pairs were not reported with the data.

4.5 Laboratory Control Sample

LCSs were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). One LCS/LCS duplicate (LCSD) pair was reported for radium-226. One LCS/LCSD pair was reported for radium-228. The recovery and replicate error ratio (RER) [1 sigma (1 σ)] results were within the laboratory specified acceptance criteria.

4.6 Laboratory Duplicate

One batch laboratory duplicate was reported for radium-226. Since these were batch QC, the results do not affect the samples in this data set and qualifications were not applied to the data.

4.7 Tracers and Carriers

Carriers were reported for the radium-226 and radium-228 analyses and a tracer was reported for the radium-228 analyses. The recovery results were within the laboratory specified acceptance criteria.

^{*} Validation qualifiers are defined in Attachment 1 at the end of this report

^{**}Reason codes are defined in Attachment 2 at the end of this report

Plant Hammond AP Site Data Validation 18 November 2021 Page 9

4.8 <u>Sensitivity</u>

The samples were reported to the MDCs. No elevated non-detect results were reported.

4.9 Electronic Data Deliverable Review

The results and sample IDs in the EDD were reviewed against the information provided by the associated level II report at a minimum of 20% as part of the data validation process. No discrepancies were identified between the level II report and the EDD.

* * * * *

ATTACHMENT 1 DATA VALIDATION QUALIFIER DEFINITIONS AND INTERPRETATION KEY

Assigned by Geosyntec's Data Validation Team

DATA QUALIFIER DEFINITIONS

- U The analyte was analyzed for but was not detected above the reported sample quantitation limit. Upon application of the U qualifier to a reported result, the definition changes to "not detected at or above the reported result".
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- J+ The analyte was positively identified; however, the associated numerical value is likely to be higher than the concentration of the analyte in the sample due to positive bias of associated QC or calibration data or attributable to matrix interference.
- J- The analyte was positively identified; however, the associated numerical value is likely to be lower than the concentration of the analyte in the sample due to negative bias of associated QC or calibration data or attributable to matrix interference.
- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

ATTACHMENT 2 DATA VALIDATION REASON CODES Assigned by Geosyntec's Data Validation Team

Valid Value	Description
1	Preservation requirement not met
2	Analysis holding time exceeded
3	Blank contamination (i.e., method, trip, equipment, etc.)
4	Matrix spike/matrix spike duplicate recovery or RPD outside limits
5	LCS or RPD recovery outside limits (LCS/LCSD)
6	Surrogate recovery outside limits
7	Field Duplicate RPD exceeded
8	Serial dilution percent difference exceeded
9	Calibration criteria not met
10	Linear range exceeded
11	Internal standard criteria not met
12	Lab duplicates RPD exceeded
13	Other
14	Lab flag removed or modified: no validation qualification required

LCS - Laboratory Control Sample LCSD - Laboratory Control Sample duplicate

RPD - Relative percent difference

FIELD SAMPLING REPORTS

August 2021

Test Date / Time: 8/12/2021 10:31:13 AM

Project: GP-Plant Hammond **Operator Name:** Thomas Kessler

Location Name: HGWA-47
Well Diameter: 2 in Casing

Type: PVC

Screen Length: 10 ft Top of Screen: 33.74 ft Total Depth: 43.74

Initial Depth to Water: 8.40 ft

Pump Type: Peristaltic

Tubing Type: Polyethylene
Pump Intake From TOC: 38.74 ft
Estimated Total Volume Pumped:

9 Liter

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: 0.05 ft Instrument Used: Aqua TROLL 400

Serial Number: 728634

Test Notes:

Five bottles: Full app. III and IV.

Weather Conditions:

Cloudy, 82 degrees.

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 0.2	+/- 5	+/- 10	+/- 0.3	
8/12/2021 10:31 AM	00:00	7.39 pH	21.99 °C	379.62 μS/cm	0.35 mg/L	1.00 NTU	-50.7 mV	8.44 ft	200.00 ml/min
8/12/2021 10:33 AM	02:10	7.39 pH	21.74 °C	380.23 μS/cm	0.42 mg/L	1.00 NTU	-52.3 mV	8.44 ft	200.00 ml/min
8/12/2021 10:38 AM	07:10	7.39 pH	21.53 °C	380.25 μS/cm	0.39 mg/L	1.00 NTU	-55.8 mV	8.44 ft	200.00 ml/min
8/12/2021 10:43 AM	12:10	7.39 pH	21.36 °C	377.78 μS/cm	0.35 mg/L	0.35 NTU	-47.6 mV	8.44 ft	200.00 ml/min
8/12/2021 10:48 AM	17:10	7.38 pH	21.47 °C	376.63 μS/cm	0.35 mg/L	0.43 NTU	-27.5 mV	8.45 ft	200.00 ml/min
8/12/2021 10:53 AM	22:10	7.38 pH	21.33 °C	375.39 μS/cm	0.33 mg/L	0.52 NTU	-21.8 mV	8.45 ft	200.00 ml/min
8/12/2021 10:58 AM	27:10	7.38 pH	21.26 °C	373.40 μS/cm	0.36 mg/L	1.01 NTU	-23.4 mV	8.45 ft	200.00 ml/min
8/12/2021 11:03 AM	32:10	7.38 pH	21.32 °C	372.19 μS/cm	0.36 mg/L	0.60 NTU	-24.5 mV	8.45 ft	200.00 ml/min

Sample ID:	Description:
HGWA-7D	Grab sample.

Test Date / Time: 8/12/2021 10:55:23 AM

Project: GP-Plant Hammond **Operator Name:** Ashley Ramsey

Location Name: HGWA-48D

Well Diameter: 2 in Casing Type: PVC Screen Length: 10 ft Top of Screen: 62.97 ft Total Depth: 72.97 ft

Initial Depth to Water: 8.22 ft

Pump Type: Bladder

Tubing Type: Polyethylene
Pump Intake From TOC: 67.97 ft
Estimated Total Volume Pumped:

4 Liter

Flow Cell Volume: 90 ml Final Flow Rate: 100 ml/min Final Draw Down: 3.09 ft Instrument Used: Aqua TROLL 400

Serial Number: 728623

Test Notes:

Five bottles: Full app. III & IV.

Weather Conditions:

Sunny, 91degrees.

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 0.2	+/- 5	+/- 10	+/- 0.3	
8/12/2021	00:00	7.49 pH	24.03 °C	396.26 μS/cm	1.54 mg/L	5.98 NTU	-50.5 mV	8.22 ft	200.00 ml/min
10:55 AM 8/12/2021									
11:00 AM	05:00	7.43 pH	20.97 °C	420.45 µS/cm	0.33 mg/L	13.10 NTU	-91.0 mV	9.91 ft	200.00 ml/min
8/12/2021	10:00	7.45 pH	20.70 °C	414.15 µS/cm	0.55 mg/L	5.00 NTU	-110.0 mV	10.70 ft	200.00 ml/min
11:05 AM	10.00	7.40 pm	20.70	414.10 μο/οπ	0.00 mg/L	0.001410	110.0111	10.7011	200.00 111/11111
8/12/2021	15:00	7.44 pH	21.43 °C	419.49 µS/cm	0.71 mg/L	3.35 NTU	-106.8 mV	11.04 ft	100.00 ml/min
11:10 AM	10.00		2		0.1	0.001110			100100 1111111111
8/12/2021	20:00	7.45 pH	21.51 °C	417.86 µS/cm	0.63 mg/L	4.36 NTU	-124.8 mV	11.14 ft	100.00 ml/min
11:15 AM	20.00	7.10 p	21.01	117.00 μο/οιτί	0.00 1119/2	1.001110	121.01114		100.00 1111/11111
8/12/2021	25:00	7.45 pH	21.46 °C	416.31 µS/cm	0.56 mg/L	3.84 NTU	-122.4 mV	11.21 ft	100.00 ml/min
11:20 AM	25.00	7. 4 3 pm	21.70 0	410.51 μ5/611	0.55 Hig/L	3.0 7 N10	122.4 1110	11.2111	100.00 111/111111
8/12/2021	30:00	7.44 pH	21.54 °C	420.85 µS/cm	0.76 mg/L	3.57 NTU	-121.8 mV	11.31 ft	100.00 ml/min
11:25 AM	30.00	7. 44 pri	21.04 0	420.03 μ3/GIII	0.70 mg/L	3.37 1410	121.01110	11.5111	100.00 111/111111

Sample ID:	Description:
HGWA-48D	Grab sample.

Test Date / Time: 8/12/2021 12:26:55 PM

Project: GP-Plant Hammond **Operator Name:** Ashley Ramsey

Location Name: HGWA-111

Well Diameter: 2 in Casing Type: PVC Screen Length: 10 ft Top of Screen: 33.67 ft Total Depth: 43.67 ft

Initial Depth to Water: 12.51 ft

Pump Type: Peri

Tubing Type: Polyethylene
Pump Intake From TOC: 38.67 ft
Estimated Total Volume Pumped:

7.5 Liter

Flow Cell Volume: 90 ml Final Flow Rate: 100 ml/min Final Draw Down: 0.23 ft Instrument Used: Aqua TROLL 400

Serial Number: 728623

Test Notes:

Five bottles: Full app. III & IV.

Weather Conditions:

Sunny, 91 degrees.

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 0.2	+/- 5	+/- 10	+/- 0.3	
8/12/2021 12:26 PM	00:00	6.57 pH	27.82 °C	127.43 μS/cm	4.10 mg/L	2.92 NTU	96.0 mV	12.51 ft	200.00 ml/min
8/12/2021 12:31 PM	05:00	6.25 pH	23.07 °C	137.73 μS/cm	3.81 mg/L	3.83 NTU	98.0 mV	12.63 ft	200.00 ml/min
8/12/2021 12:36 PM	10:00	6.23 pH	22.74 °C	146.22 μS/cm	3.85 mg/L	3.49 NTU	97.3 mV	12.74 ft	200.00 ml/min
8/12/2021 12:41 PM	15:00	6.23 pH	22.68 °C	149.07 μS/cm	3.80 mg/L	4.19 NTU	97.0 mV	12.79 ft	200.00 ml/min
8/12/2021 12:46 PM	20:00	6.23 pH	22.67 °C	151.96 μS/cm	3.82 mg/L	3.82 NTU	96.7 mV	12.83 ft	200.00 ml/min
8/12/2021 12:51 PM	25:00	6.32 pH	22.98 °C	176.38 μS/cm	3.80 mg/L	4.98 NTU	116.2 mV	12.84 ft	200.00 ml/min
8/12/2021 12:56 PM	30:00	6.56 pH	23.18 °C	229.90 μS/cm	3.61 mg/L	3.44 NTU	85.4 mV	12.85 ft	200.00 ml/min
8/12/2021 1:01 PM	35:00	6.62 pH	23.75 °C	240.54 μS/cm	3.51 mg/L	1.66 NTU	104.7 mV	12.78 ft	100.00 ml/min
8/12/2021 1:06 PM	40:00	6.66 pH	23.75 °C	247.20 μS/cm	3.41 mg/L	0.88 NTU	82.2 mV	12.75 ft	100.00 ml/min
8/12/2021 1:11 PM	45:00	6.67 pH	23.79 °C	251.42 μS/cm	3.37 mg/L	1.15 NTU	81.0 mV	12.74 ft	100.00 ml/min

Sample ID:	Description:
HGWA-111	Grab sample.

Test Date / Time: 8/12/2021 11:59:11 AM

Project: GP-Plant Hammond **Operator Name:** Connor Cain

Location Name: HGWA-112

Well Diameter: 2 in Casing Type: PVC Screen Length: 10 ft

Top of Screen: 30.15 ft Total

Depth: 40.15 ft

Initial Depth to Water: 12.55 ft

Pump Type: Bladder

Tubing Type: Polyethylene
Pump Intake From TOC: 35.15 ft
Estimated Total Volume Pumped:

11 Liter

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: 2.43 ft Instrument Used: Aqua TROLL 400

Serial Number: 728541

Test Notes:

Five bottles: Full app. III and IV.

Weather Conditions:

Cloudy, 80 degrees.

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 0.2	+/- 5	+/- 10	+/- 0.3	
8/12/2021 11:59 AM	00:00	5.51 pH	21.94 °C	79.17 µS/cm	1.46 mg/L	6.05 NTU	199.8 mV	13.25 ft	200.00 ml/min
8/12/2021 12:04 PM	05:00	5.52 pH	20.62 °C	80.62 µS/cm	2.10 mg/L	4.70 NTU	182.9 mV	13.74 ft	200.00 ml/min
8/12/2021 12:09 PM	10:00	5.52 pH	20.68 °C	81.08 µS/cm	1.81 mg/L	3.35 NTU	178.9 mV	13.88 ft	200.00 ml/min
8/12/2021 12:14 PM	15:00	5.49 pH	20.62 °C	80.92 µS/cm	1.33 mg/L	3.43 NTU	178.0 mV	13.93 ft	200.00 ml/min
8/12/2021 12:19 PM	20:00	5.49 pH	20.52 °C	80.84 µS/cm	1.59 mg/L	2.86 NTU	175.6 mV	13.98 ft	200.00 ml/min
8/12/2021 12:24 PM	25:00	5.50 pH	20.60 °C	67.59 μS/cm	1.55 mg/L	2.36 NTU	171.8 mV	13.98 ft	200.00 ml/min
8/12/2021 12:29 PM	30:00	5.51 pH	20.59 °C	81.51 µS/cm	1.29 mg/L	2.11 NTU	169.1 mV	14.00 ft	200.00 ml/min
8/12/2021 12:34 PM	35:00	5.50 pH	20.57 °C	80.88 µS/cm	1.68 mg/L	1.89 NTU	168.6 mV	14.98 ft	200.00 ml/min
8/12/2021 12:39 PM	40:00	5.50 pH	20.59 °C	81.02 μS/cm	1.19 mg/L	1.83 NTU	166.8 mV	14.98 ft	200.00 ml/min
8/12/2021 12:44 PM	45:00	5.50 pH	20.60 °C	82.21 µS/cm	1.24 mg/L	1.62 NTU	165.0 mV	14.98 ft	200.00 ml/min
8/12/2021 12:49 PM	50:00	5.50 pH	20.73 °C	78.36 μS/cm	1.18 mg/L	1.52 NTU	163.1 mV	14.98 ft	200.00 ml/min

Sample ID:	Description:
HGWA-112	Grab sample.

Test Date / Time: 8/12/2021 12:23:29 PM

Project: GP-Plant Hammond **Operator Name:** Thomas Kessler

Location Name: HGWA-113

Well Diameter: 2 in Casing Type: PVC Screen Length: 10 ft Top of Screen: 26.53 ft Total Depth: 36.53 ft

Initial Depth to Water: 9.90 ft

Pump Type: Peristaltic

Tubing Type: Polyethylene
Pump Intake From TOC: 31.53 ft
Estimated Total Volume Pumped:

16.5 Liter

Flow Cell Volume: 90 ml Final Flow Rate: 100 ml/min Final Draw Down: 9.39 ft Instrument Used: Aqua TROLL 400

Serial Number: 728634

Test Notes:

Five bottles: Full app. III and IV.

Weather Conditions:

Cloudy, 90 degrees.

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 0.2	+/- 5	+/- 10	+/- 0.3	
8/12/2021 12:23 PM	00:00	6.11 pH	24.27 °C	119.74 μS/cm	1.09 mg/L	0.89 NTU	144.9 mV	11.30 ft	100.00 ml/min
8/12/2021 12:28 PM	05:00	6.09 pH	24.67 °C	119.45 μS/cm	0.99 mg/L	3.44 NTU	122.6 mV	11.25 ft	100.00 ml/min
8/12/2021 12:33 PM	10:00	6.08 pH	24.89 °C	119.06 μS/cm	0.93 mg/L	2.25 NTU	119.1 mV	11.80 ft	100.00 ml/min
8/12/2021 12:38 PM	15:00	6.07 pH	25.02 °C	119.81 µS/cm	0.90 mg/L	3.78 NTU	113.8 mV	12.19 ft	100.00 ml/min
8/12/2021 12:43 PM	20:00	6.07 pH	25.15 °C	122.03 μS/cm	0.92 mg/L	4.16 NTU	116.4 mV	12.65 ft	100.00 ml/min
8/12/2021 12:48 PM	25:00	6.07 pH	25.48 °C	122.56 μS/cm	0.90 mg/L	4.04 NTU	114.7 mV	13.10 ft	100.00 ml/min
8/12/2021 12:53 PM	30:00	6.05 pH	26.04 °C	121.92 μS/cm	0.87 mg/L	3.15 NTU	113.8 mV	13.50 ft	100.00 ml/min
8/12/2021 12:58 PM	35:00	6.05 pH	26.31 °C	121.84 μS/cm	0.86 mg/L	1.73 NTU	113.1 mV	13.95 ft	100.00 ml/min
8/12/2021 1:03 PM	40:00	6.05 pH	26.25 °C	121.49 μS/cm	0.85 mg/L	4.50 NTU	112.4 mV	14.28 ft	100.00 ml/min
8/12/2021 1:08 PM	45:00	6.06 pH	25.77 °C	119.53 μS/cm	0.85 mg/L	6.19 NTU	111.4 mV	14.64 ft	100.00 ml/min
8/12/2021 1:13 PM	50:00	6.05 pH	25.50 °C	120.68 μS/cm	0.84 mg/L	2.45 NTU	109.8 mV	15.00 ft	100.00 ml/min
8/12/2021 1:18 PM	55:00	6.06 pH	26.09 °C	122.75 μS/cm	0.84 mg/L	1.90 NTU	108.3 mV	15.25 ft	100.00 ml/min
8/12/2021 1:23 PM	01:00:00	6.07 pH	25.59 °C	123.12 μS/cm	0.84 mg/L	1.07 NTU	107.5 mV	15.65 ft	100.00 ml/min

8/12/2021 1:28 PM	01:05:00	6.07 pH	25.36 °C	124.12 μS/cm	0.85 mg/L	2.55 NTU	105.3 mV	15.80 ft	100.00 ml/min
8/12/2021 1:33 PM	01:10:00	6.07 pH	25.18 °C	123.96 μS/cm	0.86 mg/L	0.93 NTU	105.1 mV	16.10 ft	100.00 ml/min
8/12/2021 1:38 PM	01:15:00	6.08 pH	24.74 °C	121.65 μS/cm	0.87 mg/L	1.72 NTU	105.7 mV	16.35 ft	100.00 ml/min
8/12/2021 1:43 PM	01:20:00	6.07 pH	25.22 °C	121.96 µS/cm	0.86 mg/L	1.28 NTU	104.8 mV	16.60 ft	100.00 ml/min
8/12/2021 1:48 PM	01:25:00	6.07 pH	25.51 °C	125.97 μS/cm	0.86 mg/L	1.10 NTU	103.4 mV	16.80 ft	100.00 ml/min
8/12/2021 1:53 PM	01:30:00	6.06 pH	26.13 °C	125.58 µS/cm	0.85 mg/L	0.98 NTU	104.2 mV	17.03 ft	100.00 ml/min
8/12/2021 1:58 PM	01:35:00	6.07 pH	26.05 °C	126.27 μS/cm	0.85 mg/L	3.44 NTU	103.8 mV	17.30 ft	100.00 ml/min
8/12/2021 2:03 PM	01:40:00	6.07 pH	26.69 °C	127.86 μS/cm	0.85 mg/L	1.11 NTU	104.1 mV	17.50 ft	100.00 ml/min
8/12/2021 2:08 PM	01:45:00	6.07 pH	26.82 °C	127.24 μS/cm	0.86 mg/L	1.56 NTU	104.9 mV	17.68 ft	100.00 ml/min
8/12/2021 2:13 PM	01:50:00	6.06 pH	26.55 °C	125.87 μS/cm	0.86 mg/L	1.25 NTU	103.7 mV	17.86 ft	100.00 ml/min
8/12/2021 2:18 PM	01:55:00	6.07 pH	26.42 °C	126.67 μS/cm	0.86 mg/L	1.11 NTU	103.8 mV	18.04 ft	100.00 ml/min
8/12/2021 2:23 PM	02:00:00	6.07 pH	26.65 °C	126.09 μS/cm	0.87 mg/L	1.12 NTU	103.9 mV	18.20 ft	100.00 ml/min
8/12/2021 2:28 PM	02:05:00	6.06 pH	26.78 °C	125.79 μS/cm	0.86 mg/L	1.28 NTU	102.7 mV	18.38 ft	100.00 ml/min
8/12/2021 2:33 PM	02:10:00	6.07 pH	26.98 °C	125.52 μS/cm	0.86 mg/L	1.16 NTU	102.5 mV	18.50 ft	100.00 ml/min
8/12/2021 2:38 PM	02:15:00	6.07 pH	27.17 °C	124.39 μS/cm	0.86 mg/L	0.98 NTU	101.7 mV	18.70 ft	100.00 ml/min
8/12/2021 2:43 PM	02:20:00	6.07 pH	26.96 °C	128.48 μS/cm	0.88 mg/L	1.10 NTU	101.0 mV	18.85 ft	100.00 ml/min
8/12/2021 2:48 PM	02:25:00	6.08 pH	26.73 °C	128.47 μS/cm	0.91 mg/L	2.78 NTU	102.2 mV	19.00 ft	100.00 ml/min
8/12/2021 2:53 PM	02:30:00	6.08 pH	26.86 °C	129.97 μS/cm	0.93 mg/L	1.09 NTU	101.4 mV	19.15 ft	100.00 ml/min
8/12/2021 2:58 PM	02:35:00	6.08 pH	27.06 °C	128.99 μS/cm	0.93 mg/L	2.12 NTU	101.8 mV	19.29 ft	100.00 ml/min

Sample ID:	Description:
HGWA-113	Grab sample.

Test Date / Time: 8/16/2021 12:10:43 PM

Project: GP-Plant Hammond **Operator Name:** Ashley Ramsey

Location Name: HGWC-101

Well Diameter: 2 in Casing Type: PVC Screen Length: 10 ft Top of Screen: 27.94 ft Total Depth: 37.94 ft

Initial Depth to Water: 12.76 ft

Pump Type: Bladder

Tubing Type: Polyethylene
Pump Intake From TOC: 32.94 ft
Estimated Total Volume Pumped:

4.5 Liter

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: 3.12 ft Instrument Used: Aqua TROLL 400

Serial Number: 728623

Test Notes:

Five bottles: Full app. III & IV.

Weather Conditions:

Partly cloudy, 88 degrees.

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 0.2	+/- 5	+/- 10	+/- 0.3	
8/16/2021 12:10 PM	00:00	5.33 pH	22.91 °C	297.58 μS/cm	1.32 mg/L	5.62 NTU	126.6 mV	12.76 ft	200.00 ml/min
8/16/2021 12:14 PM	04:12	5.33 pH	21.12 °C	267.47 μS/cm	0.85 mg/L	3.18 NTU	132.1 mV	14.68 ft	200.00 ml/min
8/16/2021 12:19 PM	09:12	5.35 pH	21.02 °C	263.35 μS/cm	0.57 mg/L	3.17 NTU	128.7 mV	15.55 ft	200.00 ml/min
8/16/2021 12:24 PM	14:12	5.34 pH	22.04 °C	267.73 μS/cm	0.60 mg/L	3.24 NTU	158.1 mV	15.60 ft	200.00 ml/min
8/16/2021 12:29 PM	19:12	5.32 pH	22.31 °C	304.85 μS/cm	0.46 mg/L	2.80 NTU	147.7 mV	15.68 ft	200.00 ml/min
8/16/2021 12:34 PM	24:12	5.33 pH	22.54 °C	315.20 μS/cm	0.49 mg/L	2.77 NTU	116.2 mV	15.75 ft	200.00 ml/min
8/16/2021 12:39 PM	29:12	5.37 pH	22.59 °C	317.63 μS/cm	0.46 mg/L	2.56 NTU	108.8 mV	15.83 ft	200.00 ml/min
8/16/2021 12:44 PM	34:12	5.40 pH	22.58 °C	329.06 μS/cm	0.46 mg/L	2.34 NTU	103.5 mV	15.88 ft	200.00 ml/min

Sample ID:	Description:
HGWC-101	Grab sample.

Test Date / Time: 8/13/2021 4:01:32 PM

Project: GP-Plant Hammond **Operator Name:** Connor Cain

Location Name: HGWC-102

Well Diameter: 2 in Casing Type: PVC Screen Length: 10 ft Top of Screen: 27.43 ft Total Depth: 37.43 ft

Initial Depth to Water: 12.93 ft

Pump Type: Peristaltic

Tubing Type: Polyethylene
Pump Intake From TOC: 32.43 ft
Estimated Total Volume Pumped:

15 Liter

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Instrument Used: Aqua TROLL 400

Serial Number: 728541

Test Notes:

Five bottles: Full app III and IV.

Weather Conditions:

Partly cloudy, 88 degrees.

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 0.2	+/- 5	+/- 10	+/- 0.3	
8/13/2021 4:01 PM	00:00	5.49 pH	22.67 °C	839.36 μS/cm	2.01 mg/L	1.41 NTU	51.8 mV	13.18 ft	200.00 ml/min
8/13/2021 4:06 PM	05:00	5.45 pH	21.60 °C	854.73 μS/cm	1.13 mg/L	3.05 NTU	58.1 mV	13.18 ft	200.00 ml/min
8/13/2021 4:11 PM	10:00	5.44 pH	21.51 °C	846.58 μS/cm	0.55 mg/L	3.11 NTU	65.3 mV	13.19 ft	200.00 ml/min
8/13/2021 4:16 PM	15:00	5.44 pH	21.27 °C	861.60 μS/cm	2.10 mg/L	2.48 NTU	69.1 mV	13.19 ft	200.00 ml/min
8/13/2021 4:21 PM	20:00	5.44 pH	21.37 °C	861.20 μS/cm	1.79 mg/L	2.99 NTU	71.3 mV	13.21 ft	200.00 ml/min
8/13/2021 4:26 PM	25:00	5.45 pH	21.33 °C	860.04 μS/cm	0.43 mg/L	1.88 NTU	84.4 mV	13.21 ft	200.00 ml/min
8/13/2021 4:31 PM	30:00	5.44 pH	21.33 °C	860.65 μS/cm	1.45 mg/L	4.43 NTU	74.1 mV	13.21 ft	200.00 ml/min
8/13/2021 4:36 PM	35:00	5.44 pH	21.38 °C	860.82 μS/cm	0.78 mg/L	1.58 NTU	74.7 mV	13.21 ft	200.00 ml/min
8/13/2021 4:41 PM	40:00	5.44 pH	21.29 °C	862.30 μS/cm	0.60 mg/L	2.31 NTU	75.4 mV	13.21 ft	200.00 ml/min
8/13/2021 4:46 PM	45:00	5.45 pH	21.22 °C	863.06 μS/cm	0.99 mg/L	3.43 NTU	75.9 mV	13.22 ft	200.00 ml/min
8/13/2021 4:51 PM	50:00	5.45 pH	21.29 °C	860.51 μS/cm	1.19 mg/L	2.41 NTU	86.1 mV	13.22 ft	200.00 ml/min
8/13/2021 4:56 PM	55:00	5.45 pH	21.32 °C	858.89 μS/cm	1.56 mg/L	1.97 NTU	75.9 mV	13.22 ft	200.00 ml/min
8/13/2021 5:01 PM	01:00:00	5.44 pH	21.33 °C	859.49 μS/cm	0.23 mg/L	1.03 NTU	87.0 mV	13.22 ft	200.00 ml/min
8/13/2021 5:06 PM	01:05:00	5.45 pH	21.37 °C	858.60 µS/cm	0.40 mg/L	0.85 NTU	77.3 mV	13.22 ft	200.00 ml/min

8/13/2021	01:10:00 5.45 pH		5.45 pH 21.25 °C 862.24		2.24 µS/cm		76.8 mV 13.22 ft	200.00 ml/min	
5:11 PM	01.10.00	5.45 pn	21.25 C	662.24 μ3/011	0.56 mg/L	1.05 NTU	70.01110	13.2211	200.00 1111/111111
8/13/2021	01:15:00	F 46 ml l	21.13 °C	862.41 µS/cm	0.48 mg/L	1.67 NTU	89.4 mV	13,22 ft	200.00 ml/min
5:16 PM	01:15:00	5.46 pH	21.13	662.41 µ5/cm	0.46 mg/L	1.67 NTU	69.4 1110	13.2211	200.00 mi/min

Samples

Sample ID:	Description:
HGWC-102	Grab sample.

Created using VuSitu from In-Situ, Inc.

Test Date / Time: 8/16/2021 8:58:58 AM

Project: GP-Plant Hammond **Operator Name:** Ashley Ramsey

Location Name: HGWC-103

Well Diameter: 2 in Casing Type: PVC Screen Length: 10 ft Top of Screen: 27.68 ft Total Depth: 37.68 ft

Initial Depth to Water: 12.96 ft

Pump Type: Bladder

Tubing Type: Polyethylene
Pump Intake From TOC: 32.68 ft
Estimated Total Volume Pumped:

22 Liter

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: 0.22 ft Instrument Used: Aqua TROLL 400

Serial Number: 728623

Test Notes:

Five bottles: Full app. III & IV.

Weather Conditions:

Cloudy, 88 degrees.

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 0.2	+/- 5	+/- 10	+/- 0.3	
8/16/2021 8:58 AM	00:00	5.65 pH	19.68 °C	886.50 μS/cm	1.08 mg/L	1,638.0 NTU	80.1 mV	12.96 ft	200.00 ml/min
8/16/2021 9:03 AM	05:00	5.62 pH	18.79 °C	915.50 μS/cm	0.79 mg/L		101.9 mV	13.16 ft	200.00 ml/min
8/16/2021 9:08 AM	10:00	5.62 pH	18.61 °C	936.34 μS/cm	0.25 mg/L	71.60 NTU	105.0 mV	13.18 ft	200.00 ml/min
8/16/2021 9:13 AM	15:00	5.61 pH	18.60 °C	934.90 μS/cm	0.17 mg/L	46.50 NTU	123.4 mV	13.18 ft	200.00 ml/min
8/16/2021 9:18 AM	20:00	5.61 pH	18.59 °C	935.76 μS/cm	0.21 mg/L	30.10 NTU	122.3 mV	13.18 ft	200.00 ml/min
8/16/2021 9:23 AM	25:00	5.61 pH	18.61 °C	931.72 μS/cm	0.16 mg/L	19.30 NTU	102.5 mV	13.18 ft	200.00 ml/min
8/16/2021 9:28 AM	30:00	5.60 pH	18.61 °C	931.70 μS/cm	0.20 mg/L	14.10 NTU	102.8 mV	13.18 ft	200.00 ml/min
8/16/2021 9:33 AM	35:00	5.60 pH	18.64 °C	937.26 μS/cm	0.20 mg/L	11.90 NTU	102.3 mV	13.18 ft	200.00 ml/min
8/16/2021 9:38 AM	40:00	5.59 pH	18.77 °C	931.31 μS/cm	0.13 mg/L	11.56 NTU	121.1 mV	13.18 ft	200.00 ml/min
8/16/2021 9:43 AM	45:00	5.59 pH	18.79 °C	931.56 μS/cm	0.13 mg/L	9.29 NTU	121.0 mV	13.16 ft	200.00 ml/min
8/16/2021 9:48 AM	50:00	5.59 pH	18.82 °C	930.23 μS/cm	0.15 mg/L	10.27 NTU	120.6 mV	13.18 ft	200.00 ml/min
8/16/2021 9:53 AM	55:00	5.59 pH	18.83 °C	931.44 μS/cm	0.16 mg/L	8.16 NTU	120.8 mV	13.18 ft	200.00 ml/min
8/16/2021 9:58 AM	01:00:00	5.59 pH	18.84 °C	927.82 μS/cm	0.22 mg/L	7.52 NTU	120.6 mV	13.18 ft	200.00 ml/min

8/16/2021	01:05:00	5.60 pH	18.88 °C	930.00 µS/cm	0.15 mg/L	6.55 NTU	119.7 mV	13.18 ft	200.00 ml/min
10:03 AM	01.00.00	0.00 pr i	10.00	000.00 до/от	0.10 mg/L	0.001110	110111111	10.1011	200.00 1111/111111
8/16/2021	01:10:00	5.58 pH	18.94 °C	929.75 µS/cm	0.18 mg/L	7.24 NTU	119.9 mV	13.18 ft	200.00 ml/min
10:08 AM	01.10.00	0.00 pri	10.04 0	020.70 до/от	0.10 mg/L	7.241410	110.0111	10.1011	200.00 111/11111
8/16/2021	01:15:00	5.59 pH	19.03 °C	931.09 µS/cm	0.18 mg/L	6.80 NTU	120.5 mV	13.18 ft	200.00 ml/min
10:13 AM	01.10.00	0.00 pri	10.00	301.00 до/от	0.10 mg/L	0.001410	120.0 111	10.1011	
8/16/2021	01:20:00	5.59 pH	18.93 °C	927.18 µS/cm	0.15 mg/L	6.10 NTU	119.1 mV	13.18 ft	200.00 ml/min
10:18 AM	01.20.00	0.00 pri	10.50	027.10 µ0/0111	0.10 mg/L	0.101410	110.11111	10.1011	200.00 111/11111
8/16/2021	01:25:00	5.59 pH	19.06 °C	927.83 µS/cm	0.16 mg/L	6.54 NTU	99.7 mV	13.18 ft	200.00 ml/min
10:23 AM	01.20.00	0.00 pri	10.00	027100 µ0 70	0.10 mg/L	0.041410	55.7 HIV	10.1011	200.00 111,111111
8/16/2021	01:30:00	5.58 pH	9H 19.06 °C	926.63 µS/cm	0.18 mg/L	5.84 NTU	118.2 mV	13.18 ft	200.00 ml/min
10:28 AM	01.50.00	0.00 pri		320.03 до/ст					
8/16/2021	01:35:00	5.59 pH	19.10 °C	928.79 µS/cm	0.21 mg/L	5.33 NTU	118.1 mV	13.18 ft	200.00 ml/min
10:33 AM	01.55.00	0.00 pri	15.10	320.73 μο/οπ	0.21 mg/L	3.33 1410	110.11111	10.10 10	200.00 111/111111
8/16/2021	01:40:00	5.58 pH	18.97 °C	932.27 µS/cm	0.12 mg/L	5.09 NTU	99.5 mV	13.18 ft	200.00 ml/min
10:38 AM	01.40.00	0.00 pm	10.57	332.27 µ0/0111	0.12 mg/L	3.03 1410	55.5 111	15.1010	200.00 111/111111
8/16/2021	01:45:00	5.59 pH	19.15 °C	927.49 µS/cm	0.11 mg/L	4.48 NTU	117.3 mV	13.18 ft	200.00 ml/min
10:43 AM	01.45.00	5.59 pm	19.15	927.49 μ3/011	0.11 Hig/L	4.40 1010	117.51110	15.1610	200.00 111/111111
8/16/2021	01:50:00	5.59 pH	19.15 °C	927.65 µS/cm	0.10 mg/L	4.80 NTU	116.9 mV	13.18 ft	200.00 ml/min
10:48 AM	01.30.00	3.39 pm	19.15 C	927.03 μ3/6Π	0.10 Hig/L	4.00 NTO	110.91110	15.1610	200.00 1111/111111

Samples

Sample ID:	Description:
HGWC-103	Grab sample.

Created using VuSitu from In-Situ, Inc.

Test Date / Time: 8/13/2021 2:50:07 PM

Project: GP-Plant Hammond **Operator Name:** Ashley Ramsey

Location Name: HGWC-105

Well Diameter: 2 in Casing Type: PVC Screen Length: 10 ft Top of Screen: 34.67 ft Total Depth: 44.67 ft

Initial Depth to Water: 17.62 ft

Pump Type: Bladder

Tubing Type: Polyethylene Pump

Intake From TOC: 39.67 ft

Estimated Total Volume Pumped:

8 Liter

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: 0.29 ft Instrument Used: Aqua TROLL 400

Serial Number: 728623

Test Notes:

Five bottles: Full app. III & IV.

Weather Conditions:

Sunny, 91 degrees.

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 0.2	+/- 5	+/- 10	+/- 0.3	
8/13/2021 2:50 PM	00:00	6.44 pH	22.87 °C	554.71 μS/cm	0.90 mg/L	45.80 NTU	30.2 mV	17.62 ft	200.00 ml/min
8/13/2021 2:55 PM	05:00	6.50 pH	21.59 °C	666.25 μS/cm	0.58 mg/L	17.00 NTU	39.0 mV	17.85 ft	200.00 ml/min
8/13/2021 3:00 PM	10:00	6.50 pH	21.21 °C	677.77 μS/cm	0.37 mg/L	12.90 NTU	26.9 mV	17.91 ft	200.00 ml/min
8/13/2021 3:05 PM	15:00	6.50 pH	20.68 °C	677.36 μS/cm	0.30 mg/L	10.99 NTU	20.3 mV	17.91 ft	200.00 ml/min
8/13/2021 3:10 PM	20:00	6.49 pH	20.34 °C	671.91 μS/cm	0.28 mg/L	9.75 NTU	16.3 mV	17.91 ft	200.00 ml/min
8/13/2021 3:15 PM	25:00	6.48 pH	20.15 °C	666.13 μS/cm	0.22 mg/L	8.80 NTU	12.6 mV	17.91 ft	200.00 ml/min
8/13/2021 3:20 PM	30:00	6.46 pH	20.04 °C	662.37 μS/cm	0.18 mg/L	7.58 NTU	10.3 mV	17.91 ft	200.00 ml/min
8/13/2021 3:25 PM	35:00	6.45 pH	19.93 °C	658.74 μS/cm	0.18 mg/L	6.69 NTU	8.4 mV	17.91 ft	200.00 ml/min
8/13/2021 3:30 PM	40:00	6.44 pH	19.94 °C	654.63 μS/cm	0.16 mg/L	4.61 NTU	6.4 mV	17.91 ft	200.00 ml/min

Sample ID:	Description:
HGWC-105	Grab sample.

Test Date / Time: 8/13/2021 1:37:16 PM

Project: GP-Plant Hammond **Operator Name:** Ashley Ramsey

Location Name: HGWC-107

Well Diameter: 2 in Casing Type: PVC Screen Length: 10 ft

Top of Screen: 28.20 ft Total

Depth: 38.20 ft

Initial Depth to Water: 14.87 ft

Pump Type: Bladder

Tubing Type: Polyethylene
Pump Intake From TOC: 33.20 ft
Estimated Total Volume Pumped:

6 Liter

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: 0.03 ft Instrument Used: Aqua TROLL 400

Serial Number: 728623

Test Notes:

Five bottles: Full app. III & IV.

Weather Conditions:

Sunny, 91 degrees.

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 0.2	+/- 5	+/- 10	+/- 0.3	
8/13/2021 1:37 PM	00:00	6.24 pH	26.60 °C	377.93 μS/cm	2.19 mg/L	4.83 NTU	70.6 mV	14.87 ft	200.00 ml/min
8/13/2021 1:42 PM	05:00	6.16 pH	21.24 °C	410.45 μS/cm	0.50 mg/L	4.09 NTU	102.3 mV	14.90 ft	200.00 ml/min
8/13/2021 1:47 PM	10:00	6.12 pH	20.84 °C	411.83 μS/cm	0.23 mg/L	3.50 NTU	132.2 mV	14.90 ft	200.00 ml/min
8/13/2021 1:52 PM	15:00	6.12 pH	20.70 °C	409.01 μS/cm	0.15 mg/L	3.15 NTU	106.3 mV	14.90 ft	200.00 ml/min
8/13/2021 1:57 PM	20:00	6.11 pH	20.60 °C	410.11 μS/cm	0.12 mg/L	2.84 NTU	105.8 mV	14.90 ft	200.00 ml/min
8/13/2021 2:02 PM	25:00	6.11 pH	20.62 °C	408.78 μS/cm	0.11 mg/L	2.98 NTU	106.1 mV	14.90 ft	200.00 ml/min
8/13/2021 2:07 PM	30:00	6.11 pH	20.57 °C	408.11 μS/cm	0.11 mg/L	2.85 NTU	105.9 mV	14.90 ft	200.00 ml/min

Sample ID:	Description:
HGWC-107	Grab sample.

Test Date / Time: 8/13/2021 9:06:20 AM **Project:** GP-Plant Hammond Bladder **Operator Name:** Ashley Ramsey

Location Name: HGWC-109

Well Diameter: 2 in Casing Type: PVC Screen Length: 10 ft Top of Screen: 21.36 ft Total Depth: 31.36 ft

Initial Depth to Water: 8.49 ft

Pump Type: Bladder

Tubing Type: Polyethylene
Pump Intake From TOC: 26.36 ft
Estimated Total Volume Pumped:

3.4 Liter

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: 0.03 ft Instrument Used: Aqua TROLL 400

Serial Number: 728623

Test Notes:

Five bottles: Full app. III & IV.

Weather Conditions:

Sunny, 91 degrees.

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 0.2	+/- 5	+/- 10	+/- 0.3	
8/13/2021 9:06 AM	00:00	6.77 pH	19.50 °C	363.48 μS/cm	0.19 mg/L	136.00 NTU	-68.4 mV	8.49 ft	200.00 ml/min
8/13/2021 9:11 AM	05:00	6.74 pH	19.53 °C	359.35 μS/cm	0.24 mg/L	85.00 NTU	-69.3 mV	8.52 ft	200.00 ml/min
8/13/2021 9:16 AM	10:00	6.74 pH	19.50 °C	356.64 μS/cm	0.19 mg/L	86.60 NTU	-69.5 mV	8.52 ft	200.00 ml/min
8/13/2021 9:21 AM	15:00	6.73 pH	19.44 °C	355.50 μS/cm	0.17 mg/L	79.60 NTU	-68.3 mV	8.52 ft	200.00 ml/min
8/13/2021 9:26 AM	20:00	6.73 pH	19.57 °C	354.47 μS/cm	0.24 mg/L	69.00 NTU	-76.4 mV	8.52 ft	200.00 ml/min
8/13/2021 9:31 AM	25:00	6.73 pH	19.46 °C	355.43 μS/cm	0.18 mg/L	46.40 NTU	-76.6 mV	8.52 ft	200.00 ml/min
8/13/2021 9:36 AM	30:00	6.72 pH	19.53 °C	354.30 μS/cm	0.16 mg/L	42.00 NTU	-75.9 mV	8.52 ft	200.00 ml/min
8/13/2021 9:41 AM	35:00	6.71 pH	19.51 °C	355.66 μS/cm	0.15 mg/L	31.40 NTU	-67.7 mV	8.52 ft	200.00 ml/min
8/13/2021 9:46 AM	40:00	6.72 pH	19.51 °C	356.09 μS/cm	0.16 mg/L	24.10 NTU	-67.2 mV	8.52 ft	200.00 ml/min
8/13/2021 9:51 AM	45:00	6.72 pH	19.41 °C	356.66 μS/cm	0.15 mg/L	22.90 NTU	-74.5 mV	8.52 ft	200.00 ml/min
8/13/2021 9:56 AM	50:00	6.72 pH	19.53 °C	354.35 μS/cm	0.15 mg/L	15.80 NTU	-66.7 mV	8.52 ft	200.00 ml/min
8/13/2021 10:01 AM	55:00	6.72 pH	19.68 °C	354.94 μS/cm	0.15 mg/L	14.50 NTU	-74.5 mV	8.52 ft	200.00 ml/min
8/13/2021 10:06 AM	01:00:00	6.71 pH	19.43 °C	355.02 μS/cm	0.15 mg/L	14.00 NTU	-65.6 mV	8.52 ft	200.00 ml/min

0/40/0004									
8/13/2021 10:11 AM	01:05:00	6.72 pH	20.83 °C	360.20 μS/cm	0.16 mg/L	12.50 NTU	-76.7 mV	8.52 ft	200.00 ml/min
8/13/2021 10:16 AM	01:10:00	6.71 pH	21.48 °C	355.90 μS/cm	0.23 mg/L	13.20 NTU	-67.6 mV	8.52 ft	200.00 ml/min
8/13/2021 10:21 AM	01:15:00	6.71 pH	21.78 °C	355.26 μS/cm	0.25 mg/L	13.70 NTU	-67.1 mV	8.52 ft	200.00 ml/min
8/13/2021 10:26 AM	01:20:00	6.71 pH	21.78 °C	354.53 μS/cm	0.26 mg/L	12.20 NTU	-66.0 mV	8.52 ft	200.00 ml/min
8/13/2021 10:31 AM	01:25:00	6.69 pH	21.96 °C	355.47 μS/cm	0.27 mg/L	11.90 NTU	-65.7 mV	8.52 ft	200.00 ml/min
8/13/2021 10:36 AM	01:30:00	6.70 pH	22.08 °C	356.10 μS/cm	0.27 mg/L	11.30 NTU	-65.9 mV	8.52 ft	200.00 ml/min
8/13/2021 10:41 AM	01:35:00	6.71 pH	22.13 °C	356.13 μS/cm	0.28 mg/L	11.06 NTU	-73.0 mV	8.52 ft	200.00 ml/min
8/13/2021 10:46 AM	01:40:00	6.71 pH	22.05 °C	354.87 μS/cm	0.27 mg/L	10.89 NTU	-65.2 mV	8.52 ft	200.00 ml/min
8/13/2021 10:51 AM	01:45:00	6.71 pH	22.18 °C	355.67 μS/cm	0.28 mg/L	9.90 NTU	-72.7 mV	8.52 ft	200.00 ml/min
8/13/2021 10:56 AM	01:50:00	6.70 pH	22.01 °C	355.69 μS/cm	0.27 mg/L	9.70 NTU	-64.5 mV	8.52 ft	200.00 ml/min
8/13/2021 11:01 AM	01:55:00	6.71 pH	22.13 °C	357.32 μS/cm	0.28 mg/L	9.77 NTU	-72.3 mV	8.52 ft	200.00 ml/min
8/13/2021 11:06 AM	02:00:00	6.72 pH	22.27 °C	356.75 μS/cm	0.27 mg/L	8.42 NTU	-65.5 mV	8.52 ft	200.00 ml/min
8/13/2021 11:11 AM	02:05:00	6.72 pH	22.14 °C	357.02 μS/cm	0.27 mg/L	7.65 NTU	-72.5 mV	8.52 ft	200.00 ml/min
8/13/2021 11:16 AM	02:10:00	6.72 pH	22.13 °C	356.33 μS/cm	0.27 mg/L	7.22 NTU	-65.0 mV	8.52 ft	200.00 ml/min
8/13/2021 11:21 AM	02:15:00	6.71 pH	22.05 °C	355.92 μS/cm	0.27 mg/L	6.82 NTU	-64.3 mV	8.52 ft	200.00 ml/min
8/13/2021 11:26 AM	02:20:00	6.71 pH	22.31 °C	356.52 μS/cm	0.27 mg/L	6.14 NTU	-64.8 mV	8.52 ft	200.00 ml/min
8/13/2021 11:31 AM	02:25:00	6.72 pH	22.27 °C	355.33 μS/cm	0.27 mg/L	5.87 NTU	-64.4 mV	8.52 ft	200.00 ml/min
8/13/2021 11:36 AM	02:30:00	6.72 pH	22.27 °C	357.39 μS/cm	0.27 mg/L	5.73 NTU	-64.9 mV	8.52 ft	200.00 ml/min
8/13/2021 11:41 AM	02:35:00	6.72 pH	22.68 °C	354.76 μS/cm	0.27 mg/L	5.42 NTU	-71.9 mV	8.52 ft	200.00 ml/min
8/13/2021 11:46 AM	02:40:00	6.72 pH	22.81 °C	355.02 μS/cm	0.26 mg/L	5.21 NTU	-65.1 mV	8.52 ft	200.00 ml/min
8/13/2021 11:51 AM	02:45:00	6.70 pH	22.98 °C	354.44 μS/cm	0.26 mg/L	4.57 NTU	-71.4 mV	8.52 ft	200.00 ml/min
8/13/2021 11:56 AM	02:50:00	6.71 pH	23.21 °C	354.19 μS/cm	0.26 mg/L	4.47 NTU	-65.1 mV	8.52 ft	200.00 ml/min

Sample ID:	Description:
HGWC-109	Grab sample.

Test Date / Time: 8/19/2021 5:44:41 PM

Project: GP-Plant Hammond **Operator Name:** Thomas Kessler

Location Name: HGWC-117

Well Diameter: 2 in Casing Type: PVC Screen Length: 10 ft Top of Screen: 30.26 ft Total Depth: 40.26

Initial Depth to Water: 14.91 ft

Pump Type: Peristaltic Tubing Type: Poly

Pump Intake From TOC: 35.26 ft Estimated Total Volume Pumped:

9 Liter

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: 0.04 ft Instrument Used: Aqua TROLL 400

Serial Number: 728634

Test Notes:

Five bottles: Full App. III and IV.

Weather Conditions:

Cloudy, 80 degrees.

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 0.2	+/- 5	+/- 10	+/- 0.3	
8/19/2021 5:44 PM	00:00	5.81 pH	20.70 °C	219.66 μS/cm	0.28 mg/L	1.95 NTU	148.1 mV	14.95 ft	200.00 ml/min
8/19/2021 5:48 PM	03:55	5.79 pH	20.56 °C	217.09 μS/cm	0.22 mg/L	1.87 NTU	122.4 mV	14.95 ft	200.00 ml/min
8/19/2021 5:53 PM	08:55	5.79 pH	20.52 °C	214.70 μS/cm	0.18 mg/L	1.47 NTU	135.9 mV	14.95 ft	200.00 ml/min
8/19/2021 5:58 PM	13:55	5.79 pH	20.60 °C	215.93 μS/cm	0.17 mg/L	0.87 NTU	96.8 mV	14.95 ft	200.00 ml/min
8/19/2021 6:03 PM	18:55	5.82 pH	20.69 °C	235.24 μS/cm	0.16 mg/L	0.95 NTU	93.0 mV	14.95 ft	200.00 ml/min
8/19/2021 6:08 PM	23:55	5.93 pH	20.96 °C	290.70 μS/cm	0.16 mg/L	0.99 NTU	86.4 mV	14.95 ft	200.00 ml/min
8/19/2021 6:13 PM	28:55	6.01 pH	21.06 °C	328.84 µS/cm	0.17 mg/L	0.96 NTU	80.1 mV	14.95 ft	200.00 ml/min
8/19/2021 6:18 PM	33:55	6.01 pH	21.16 °C	342.07 μS/cm	0.16 mg/L	0.85 NTU	77.8 mV	14.95 ft	200.00 ml/min
8/19/2021 6:23 PM	38:55	6.04 pH	21.19 °C	345.48 μS/cm	0.15 mg/L	1.10 NTU	75.4 mV	14.95 ft	200.00 ml/min

Sample ID:	Description:
HGWC-117	Grab sample.

Test Date / Time: 8/12/2021 4:56:31 PM

Project: GP-Plant Hammond **Operator Name:** Thomas Kessler

Location Name: HGWC-117A

Well Diameter: 2 in **Casing Type: PVC** Screen Length: 10 ft Top of Screen: 30.40 ft Total Depth: 40.40

Initial Depth to Water: 16.34 ft

Pump Type: Peristaltic

Tubing Type: Polyethylene Intake From TOC: 35.40 ft

Estimated Total Volume Pumped:

12 Liter

Flow Cell Volume: 90 ml

Final Flow Rate: 200 ml/min Final

Draw Down: 0.00 ft

Instrument Used: Aqua TROLL 400

Serial Number: 728634

Test Notes:

Five bottles: Full app. III and IV.

Weather Conditions:

Sunny, 96 degrees.

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 0.2	+/- 5	+/- 10	+/- 0.3	
8/12/2021 4:56 PM	00:00	5.88 pH	25.42 °C	324.03 μS/cm	0.36 mg/L	14.40 NTU	154.3 mV	16.32 ft	100.00 ml/min
8/12/2021 5:01 PM	05:00	5.81 pH	23.51 °C	334.10 μS/cm	0.23 mg/L	12.51 NTU	163.1 mV	16.32 ft	100.00 ml/min
8/12/2021 5:06 PM	10:00	5.80 pH	23.37 °C	335.19 μS/cm	0.17 mg/L	6.01 NTU	113.1 mV	16.32 ft	100.00 ml/min
8/12/2021 5:11 PM	15:00	5.83 pH	23.42 °C	333.20 μS/cm	0.15 mg/L	5.85 NTU	104.3 mV	16.32 ft	100.00 ml/min
8/12/2021 5:16 PM	20:00	5.87 pH	23.38 °C	329.22 μS/cm	0.14 mg/L	7.68 NTU	133.5 mV	16.32 ft	100.00 ml/min
8/12/2021 5:21 PM	25:00	5.96 pH	23.16 °C	327.03 μS/cm	0.13 mg/L	7.34 NTU	126.5 mV	16.32 ft	100.00 ml/min
8/12/2021 5:26 PM	30:00	6.05 pH	23.26 °C	332.62 μS/cm	0.12 mg/L	9.68 NTU	88.2 mV	16.32 ft	100.00 ml/min
8/12/2021 5:31 PM	35:00	6.11 pH	23.34 °C	337.44 μS/cm	0.12 mg/L	10.29 NTU	108.4 mV	16.32 ft	100.00 ml/min
8/12/2021 5:36 PM	40:00	6.19 pH	23.38 °C	341.86 μS/cm	0.11 mg/L	10.34 NTU	79.4 mV	16.32 ft	100.00 ml/min
8/12/2021 5:41 PM	45:00	6.22 pH	23.33 °C	342.58 μS/cm	0.11 mg/L	8.27 NTU	98.8 mV	16.32 ft	100.00 ml/min
8/12/2021 5:46 PM	50:00	6.25 pH	23.42 °C	345.88 μS/cm	0.11 mg/L	7.65 NTU	73.6 mV	16.32 ft	100.00 ml/min
8/12/2021 5:51 PM	55:00	6.27 pH	23.34 °C	347.29 μS/cm	0.10 mg/L	4.92 NTU	91.7 mV	16.32 ft	100.00 ml/min

Sample ID:	Description:
HGWC-117A	Grab sample.

Test Date / Time: 8/13/2021 1:43:15 PM

Project: GP-Plant Hammond **Operator Name:** Connor Cain

Location Name: HGWC-118

Well Diameter: 2 in Casing Type: PVC Screen Length: 10 ft Top of Screen: 30.90 ft Total Depth: 40.90 ft

Initial Depth to Water: 13.12 ft

Pump Type: Peristaltic

Tubing Type: Polyethylene
Pump Intake From TOC: 35.90 ft
Estimated Total Volume Pumped:

7 Liter

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: 0.08 ft Instrument Used: Aqua TROLL 400

Serial Number: 728541

Test Notes:

Five bottles: Full App. III and IV.

Weather Conditions:

Sunny, 92 degrees.

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 0.2	+/- 5	+/- 10	+/- 0.3	
8/13/2021 1:43 PM	00:00	6.94 pH	27.69 °C	508.13 μS/cm	0.88 mg/L	0.67 NTU	20.4 mV	13.20 ft	200.00 ml/min
8/13/2021	05:00	6.78 pH	24.64 °C	527.16 μS/cm	0.40 mg/L	0.22 NTU	34.1 mV	13.20 ft	200.00 ml/min
1:48 PM 8/13/2021									
1:53 PM	10:00	6.78 pH	24.69 °C	527.15 μS/cm	0.33 mg/L	0.67 NTU	39.5 mV	13.20 ft	200.00 ml/min
8/13/2021 1:58 PM	15:00	6.77 pH	24.33 °C	526.59 μS/cm	0.55 mg/L	0.21 NTU	37.6 mV	13.20 ft	200.00 ml/min
8/13/2021 2:03 PM	20:00	6.78 pH	24.72 °C	528.67 μS/cm	0.39 mg/L	0.95 NTU	34.5 mV	13.20 ft	200.00 ml/min
8/13/2021 2:08 PM	25:00	6.77 pH	24.99 °C	523.31 μS/cm	0.36 mg/L	0.22 NTU	31.2 mV	13.20 ft	200.00 ml/min
8/13/2021 2:13 PM	30:00	6.78 pH	24.78 °C	519.98 μS/cm	0.44 mg/L	0.85 NTU	33.2 mV	13.20 ft	200.00 ml/min

Sample ID:	Description:
HGWC-118	Grab sample.

September 2021

Low-Flow Test Report:

Test Date / Time: 9/27/2021 12:45:25 PM

Project: GP-Plant Hammond **Operator Name:** Thomas Kessler

Location Name: HGWC-117A

Well Diameter: 2 in Casing Type: PVC Screen Length: 10 ft Top of Screen: 30 ft Total Depth: 40.4 ft

Initial Depth to Water: 15.76 ft

Pump Type: Peristaltic Tubing Type: Poly

Pump Intake From TOC: 35 ft Estimated Total Volume Pumped:

6.3 liter

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: 0.02 ft Instrument Used: Aqua TROLL 400

Serial Number: 728638

Test Notes:

5 bottles

Weather Conditions:

Sunny, 82 degrees.

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 0.2	+/- 5	+/- 10	+/- 0.3	
9/27/2021 12:45 PM	00:00	5.53 pH	22.64 °C	274.20 μS/cm	2.09 mg/L	0.12 NTU	14.5 mV	15.78 ft	200.00 ml/min
9/27/2021 12:47 PM	01:44	5.54 pH	22.57 °C	279.66 μS/cm	0.44 mg/L	0.12 NTU	8.3 mV	15.78 ft	200.00 ml/min
9/27/2021 12:52 PM	06:44	5.56 pH	22.39 °C	284.32 μS/cm	0.49 mg/L	0.00 NTU	1.1 mV	15.78 ft	200.00 ml/min
9/27/2021 12:57 PM	11:44	5.57 pH	22.44 °C	284.04 μS/cm	0.37 mg/L	0.09 NTU	-12.3 mV	15.78 ft	200.00 ml/min
9/27/2021 1:02 PM	16:44	5.57 pH	22.65 °C	284.62 μS/cm	0.43 mg/L	0.33 NTU	-0.6 mV	15.78 ft	200.00 ml/min
9/27/2021 1:07 PM	21:44	5.65 pH	22.52 °C	273.84 μS/cm	0.44 mg/L	0.37 NTU	-1.9 mV	15.78 ft	200.00 ml/min
9/27/2021 1:12 PM	26:44	5.74 pH	22.62 °C	294.96 μS/cm	0.35 mg/L	0.51 NTU	-3.1 mV	15.78 ft	200.00 ml/min
9/27/2021 1:17 PM	31:44	5.84 pH	22.80 °C	302.09 μS/cm	0.50 mg/L	0.41 NTU	-3.0 mV	15.78 ft	200.00 ml/min
9/27/2021 1:22 PM	36:44	5.93 pH	22.80 °C	311.76 μS/cm	0.42 mg/L	0.33 NTU	-1.3 mV	15.78 ft	200.00 ml/min
9/27/2021 1:23 PM	38:18	5.94 pH	22.80 °C	313.14 μS/cm	0.48 mg/L		-1.9 mV	15.78 ft	200.00 ml/min
9/27/2021 1:28 PM	43:18	6.01 pH	22.63 °C	320.51 μS/cm	0.39 mg/L	0.23 NTU	0.0 mV	15.78 ft	200.00 ml/min
9/27/2021 1:33 PM	48:18	6.07 pH	22.72 °C	324.85 μS/cm	0.42 mg/L	0.74 NTU	1.3 mV	15.78 ft	200.00 ml/min
9/27/2021 1:38 PM	53:18	6.11 pH	22.68 °C	329.89 μS/cm	0.41 mg/L	0.31 NTU	-7.6 mV	15.78 ft	200.00 ml/min

9/27/2021	E0.20	6.14 511	22.59 °C	335.41 µS/cm	0.44 mg/l	0.27 NTU	0.0 m\/	45 70 H	200.00 ml/min
1:44 PM	58:38	6.14 pH	22.59 C	335.41 µ3/011	0.44 mg/L	0.27 NTO	8.9 mV	15.78 ft	200.00 mi/min

Samples

Sample ID:	Description:
HGWC-117A	Grab Sample.

Created using VuSitu from In-Situ, Inc.

Low-Flow Test Report:

Test Date / Time: 9/27/2021 2:41:28 PM

Project: GP-Plant Hammond **Operator Name:** Thomas Kessler

Location Name: HGWC-117

Well Diameter: 2 in Casing Type: PVC Screen Length: 10 ft Top of Screen: 30.26 ft Total Depth: 40.26 ft

Initial Depth to Water: 15.99 ft

Pump Type: Peristaltic Tubing Type: Poly

Pump Intake From TOC: 35.25 ft Estimated Total Volume Pumped:

9 liter

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: 0.01 ft Instrument Used: Aqua TROLL 400

Serial Number: 728638

Test Notes:

5 bottles.

Weather Conditions:

Sunny, 80 degrees.

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 0.2	+/- 5	+/- 10	+/- 0.3	
9/27/2021 2:41 PM	00:00	5.45 pH	24.10 °C	256.29 μS/cm	0.41 mg/L	8.89 NTU	92.3 mV	16.00 ft	200.00 ml/min
9/27/2021 2:46 PM	05:00	5.57 pH	22.63 °C	301.84 μS/cm	0.33 mg/L	7.89 NTU	65.9 mV	16.00 ft	200.00 ml/min
9/27/2021 2:51 PM	10:00	5.61 pH	22.46 °C	318.72 μS/cm	0.23 mg/L	6.20 NTU	60.2 mV	16.00 ft	200.00 ml/min
9/27/2021 2:56 PM	15:00	5.63 pH	22.26 °C	325.32 μS/cm	0.27 mg/L	3.31 NTU	77.8 mV	16.00 ft	200.00 ml/min
9/27/2021 3:01 PM	20:00	5.63 pH	22.31 °C	331.12 μS/cm	0.23 mg/L	3.37 NTU	53.9 mV	16.00 ft	200.00 ml/min
9/27/2021 3:06 PM	25:00	5.65 pH	22.13 °C	335.67 μS/cm	0.23 mg/L	2.90 NTU	69.7 mV	16.00 ft	200.00 ml/min
9/27/2021 3:11 PM	30:00	5.65 pH	22.22 °C	354.46 μS/cm	0.23 mg/L	2.07 NTU	71.9 mV	16.00 ft	200.00 ml/min
9/27/2021 3:16 PM	35:00	5.65 pH	22.26 °C	345.82 μS/cm	0.21 mg/L	2.02 NTU	54.1 mV	16.00 ft	200.00 ml/min
9/27/2021 3:21 PM	40:00	5.66 pH	22.35 °C	345.47 μS/cm	0.20 mg/L	1.92 NTU	70.6 mV	16.00 ft	200.00 ml/min

Samples

Sample ID:	Description:
HGWC-117	Grab Sample.

CALIBRATION REPORTS

August 2021

Geosyntec Consultants			E	QUIPMENT CA	ALIBRATION L	OG							
Field Technician: C. CAIN	V			Date 8/12/	21		Time (start): <u>072</u> 0)					
smarTroll SN: 72 85 41		_		Turbidity Meter Type:	LaMote 2020we	_	sn <u>2953</u>						
Weather Conditions: Clardy,	75°F	_		Facility and Unit:	lant Hamma	d	Project No GW6581						
Calibration log													
	Standard Lot # / Date of Expiration	Temp of Standard (°C)	Value of Standard	Initial Reading	Post-Cal Reading	Acceptable Range	Pass?	Comments					
Specific Conductance (µS/cm)	20440203	72 MB	4490	4511.8	4490	+/- 5 %	No No						
рН (4)	02/12	23.71	4.00	3.98	4.0	+/- 0,1 SU	No No						
Mid-Day pH (4) check	20440203	29.16	4.00	4.03	4.0	+/- 0 1 SU	No No						
pH (7)	M450117 2/22	25.45	7.00	6.95	7.0	+/- 0 ₋ 1 SU	No No						
Mid-Day pH (7) check	19450117	28.69	7.00	7.0	7.0	+/- 0 ₁ 1 SU	Ø No						
рН (10)	21010067	25.36	10.00	10.02	10	+/- 0 1 SU	OB No						
Mid-Day pH (10) check	2/22	28.25	10.00	10.0	10.0	+/- 0.1 SU	Yes No						
ORP (mV)	19460167	25.57	228	229.4	228	+/- 20mV	No No						
DO (%) (1pt, 100% water saturated air cal)			100	99.16	100	+/- 6 % saturation	Roy No						
Turbidity 0 NTU			0	0.08	0.08	+/- 0.5 NTU	No No						
Turbidity 1 NTU			1.00	0.73	1.0	+/- 0 5 NTU	X No						
Turbidity 10 NTU			10.00	12.56	10.0	+/- 0.5 NTU	No No						

Geosyntec ^D			E	QUIPMENT CA	ALIBRATION L	OG						
Field Technician:	hessh!			Date: 8117/2	الات		Time (start):	770 Time (finish): 6780				
smarTroll SN77%	534	_		Turbidity Meter Type:	LaMote 2020we		SN: 47					
Weather Conditions:				Facility and Unit:_Plant	Hammond ,	_	Project NoGW6					
Calibration log												
	Standard Lot #/ Date of Expiration	Temp of Standard (°C)	Value of Standard	Initial Reading	Post-Cal Reading	Acceptable Range	Pass?	Comments				
Specific Conductance (μS/cm)	76440763	24.37	4490	4625.4	4490	+/- 5 %	(Yes) No					
pH (4)	7/22	(.37	4.00	3.96	4.00	+/- 0_1 SU	es No					
Mid-Day pH (4) check	42 00	/	4.00	402		+/- 0.1 SU	Yes No					
рН (7)	21 680128 6/22	74.81	7.00	6.98	7,60	+/- 0 _. 1 SU	Yes No					
Mid-Day pH (7) check	pi 'n	/	7.00	6.97		+/- 0 1 SU	Yes No					
рН (10)	२१ ०५०१६५ ६/२८	25.17	10.00	9.95	10.60	+/- 0 1 SU	Yes No					
Mid-Day pH (10) check	n v	/	10.00	10.08	/	+/- 0 1 SU	Yes No					
ORP (mV)	19460167	25.27	228	2360	228	+/- 20mV	Yes No					
DO (%) (1pt, 100% water saturated air cal)			100	97	100	+/- 6 % saturation	Yes No					
Turbidity 0 NTU			0	0.47	0.60	+/- 0.5 NTU	Yes No					
Turbidity 1 NTU			1.00	0.91	0.98	+/- 0,5 NTU	Yes No					
Turbidity 10 NTU			10.00	(0.15	10.04	+/- 0 5 NTU	Yes No					

Consumtoo		200				A T C C C C C							
Geosyntec consultants			E	QUIPMENT CA	LIBRATION L	OG							
Field Technician: A. Pans	Suz			Date 312	21		Time (start):	120 Time (finish): 0745					
smarTroll SN: 728 6	23			Turbidity Meter Type _	LaMote 2020we		SN: 1859	0412					
Weather Conditions: SUNW	g.91	===		Facility and Unit:	ant ham	mond	Project No :GW6	5581					
Calibration log													
	Standard Lot # / Date of Expiration	Temp of Standard (°C)	Value of Standard	Initial Reading	Post-Cal Reading	Acceptable Range	Pass?	Comments					
Specific Conductance (µS/cm)	2044023	2348	4490	यय या . छ	4490.0	+/- 5 %	Yes No						
рН (4)		23.40	4.00	3.97	4.00	+/- 0,1 SU	No No						
Mid-Day pH (4) check		3176	4.00	3.91		+/- 0.1 SU	No No						
рН (7)	21080188	23.70	7.00	6.97	7.00	+/- 0.1 SU	No No						
Mid-Day pH (7) check		3152	7.00	7.02		+/- 0,1 SU	Yes No						
рН (10)	21080189	23.54	10.00	9.99	10:00	+/- 0.1 SU	No No						
Mid-Day pH (10) check		30.89	10.00	9.98		+/- 0.1 SU	Yes No						
ORP (mV)	1946961 2/22	23.43	228	234.7	2280	+/- 20mV	Yes No						
DO (%) (1pt, 100% water saturated air cal)			100	100.60	100.00	+/- 6 % saturation	Yes No						
Turbidity 0 NTU			0	0.85	0 00	+/- 0.5 NTU	No						
Turbidity I NTU			1.00	2.32	1.00	+/- 0.5 NTU	Yes No						
Turbidity 10 NTU			10.00	7.62	10.00	+/- 0.5 NTU	Yes No	×					

Geosyntec consultants			E	QUIPMENT CA	ALIBRATION L	OG			
Field Technician: C.CAIN				Date: 8/13/2	<u> </u>		Time (start): 0725	Time (finish): 0750	
smarTroll SN:	Deen .	_			LaMote 2020we		sn 2953		
Weather Conditions: Senny	75° F	_		Facility and Unit:	lant Hamme	md	Project No.: GW6581		
				Calib	ration log				
	Standard Lot #/ Date of Expiration	Temp of Standard (°C)	Value of Standard	Initial Reading	Post-Cal Reading	Acceptable Range	Pass?	Comments	
Specific Conductance (µS/cm)	20440203	76 46	4490	4461	4490	+/- 5 %	⊘ No		
p H (4)	2/22	25.48	4.00	3.97	4.0	+/- 0.1 SU	⊘ No		
Mid-Day pH (4) check		37.31	4.00	4.37	4.0	+/- 0.1 SU	€ No		
рН (7)	19450117	26.33	7.00	6.96	7.0	+/- 0.1 SU	No No		
Mid-Day pH (7) check		3448	7.00	7.13	7.0	+/- 0 I SU	No No		
pH (10)	2/22	25.97	10.00	9.97	10.0	+/- 0.1 SU	™ No		
Mid-Day pH (10) check		33-41	10.00	9.80	10.0	+/- 0.1 SU	Ø No		
ORP (mV)	19460167	26.15	228	225.4	228	+/- 20mV	No No		
DO (%) (1pt, 100% water saturated air cal)			100	100.25	100	+/- 6 % saturation	₩ No		
Turbidity 0 NTU			0	0.06	0.05	+/- 0 5 NTU	No No		
Turbidity 1 NTU			1.00	0.74	1.0	+/- 0 5 NTU	No No		
Turbidity 10 NTU			10.00	12.2	10.0	+/- 0.5 NTU	No No		

Geosyntec consultants		14	E	QUIPMENT CA	LIBRATION L	OG							
Field Technician: A. Pams	scy			Date 8 13 7	21		Time (start):	7125 Time (finish): 0750					
smarTroll SN: 72 862		_		Turbidity Meter Type:	LaMote 2020we		SN: 1859-0412						
Weather Conditions: SUN N	y, 91	_		Facility and Unit:	ant ham	mond	Project NoGW6.	581					
Calibration log													
	Standard Lot # / Date of Expiration	Temp of Standard (°C)	Value of Standard	Initial Reading	Post-Cal Reading	Acceptable Range	Pass?	Comments					
Specific Conductance (μS/cm)	2044025	25 65	4490	4535 2	4490.0	+/- 5 %	(Yes) No						
pH (4)	2/22		4.00	4.03	4.00	+/- 0.1 SU	Yes No						
Mid-Day pH (4) check	21 (1	3154	4.00	4.03		+/- 0 1 SU	Yes No						
pH (7)	21080188	2586	7.00	7.02	7.00	+/- 0.1 SU	Yes No						
Mid-Day pH (7) check	n v	3189	7.00	7.63		+/- 0 ₋ 1 SU	No No						
pH (10)	21 080189	25.GI	10.00	9.99	10.00	+/- 0 1 SU	Yes No						
Mid-Day pH (10) check	<i>u</i>	<i>3</i> 0 88	10.00	10.02		+/- 0 1 SU	No No						
ORP (mV)	19460167 2122	25.18	228	226.3	228.0	+/- 20m V	No No						
DO (%) (1pt, 100% water saturated air cal)			100	100.33	100.00	+/- 6 % saturation	Yes No						
Turbidity 0 NTU			0	0.61	0.00	+/- 0 5 NTU	(Yes No						
Turbidity 1 NTU			1.00	2-12	1.00	+/- 0 5 NTU	Yes No						
Turbidity 10 NTU			10.00	7.57	10.0	+/- 0.5 NTU	Yes No						

Geosyntec ^D	L MG TOTAL TOTAL	100	A PARTY OF THE PAR									
consultants			E	QUIPMENT CA	LIBRATION L	og						
Field Technician: A. Raw	lsey			Date: 8116	121		Time (start):	735 Time (finish): 0805				
smarTroll SN	3	_		Turbidity Meter Type:	LaMote 2020we		SN: 1459-6412					
Weather Conditions: CLOUC	ly.88			Facility and Unit:	aud ham	monel	Project No.; GW6	.581				
Calibration log												
	Standard Lot # / Date of Expiration	Temp of Standard (°C)	Value of Standard	Initial Reading	Post-Cal Reading	Acceptable Range	Pass?	Comments				
Specific Conductance (μS/cm)	2044203 2122	26.15	4490	4384,9	4490.0	+/- 5 %	Ves No					
рН (4)		36.3	4.00	4.02	4.00	+/- 0.1 SU	Ves No					
Mid-Day pH (4) check	21080188	26.18	4.00	4.03		+/- 0.1 SU	Yes No					
pH (7)	•	<u>^</u>	7.00	6.45	7,00	+/- 0 1 SU	(Yes) No					
Mid-Day pH (7) check	v «	30.44	7.00	7.03	_	+/- 0.1 SU	(Yes) No					
рН (10)	6/22	24.15	10.00	9,91	10.00	+/- 0 1 SU	No No					
Mid-Day pH (10) check	n w	3 0.49	10.00	9.96		+/- 0.1 SU	No No					
ORP (mV)	19460162	26.10	228	225.0	228.0	+/- 20mV	No No					
DO (%) (1pt, 100% water saturated air cal)			100	99.83	100.0	+/- 6 % saturation	Yes No					
Turbidity 0 NTU			0	1.00	6.00	+/- 0.5 NTU	Yes No					
Turbidity 1 NTU			1.00	1.47	00-1	+/- 0.5 NTU	(Yes) No					
Turbidity 10 NTU			10.00	C-84	(c. 00	+/- 0.5 NTU	Yes No					

Geosyntec [▷]												
consultants			E	QUIPMENT CA	LIBRATION L	OG						
Field Technician:				Date 8/19			Time (start): 0720 Time (finish): 08(S					
smarTroll SN: 72865	34			Turbidity Meter Type:	LaMote 2020we		SN 5773-1815					
Weather Conditions:	m	_		Facility and Unit:	Hammond		Project No GW6581					
Calibration log												
	Standard Lot # / Date of Expiration	Temp of Standard (°C)	Value of Standard	Initial Reading	Post-Cal Reading	Acceptable Range	Pass?	Comments				
Specific Conductance (μS/cm)	2044000		4490	L1576.1	4490	+/- 5 %	Pes No					
pH (4)	22120	24.95	4.00	6-9-1	E SES	+/- 0.1 SU	Yes No	pH=4.00				
Mid-Day pH (4) check	11 11	/	4.00	4.61		+/- 0,1 SU	Yes No					
рН (7)	21620188	26.60	7.00	6.95	7,00	+/- 0 1 SU	Yes No					
Mid-Day pH (7) check	A Vi		7.00	6.99		+/- 0.1 SU	Yes No					
pH (10)	21050189	26-50	10.00	9.92	16.60	+/- 0.1 SU	Yes No					
Mid-Day pH (10) check	и		10.00	9.97	/	+/- 0 1 SU	Yes No					
ORP (mV)	19460167	76.35	228	718.9	855	+/- 20mV	Yes No					
DO (%) (1pt, 100% water saturated air cal)			100	84.39	ICC	+/- 6 % saturation	Ye No					
Turbidity 0 NTU			0	1.23	0.00	+/- 0_5 NTU	Yes No					
Turbidity 1 NTU			1.00	o.au	1.00	+/- 0.5 NTU	Yes No					
Turbidity 10 NTU			10.00	9.89	9.95	+/- 0.5 NTU	Yes No					

September 2021

Geosyntec D	(1	ı	E	QUIPMENT CA	ALIBRATION L	OG		
Field Technician Tuesmo	s hear	V		Date 9/2	7/7		Time (start)	Time (finish): 1130
smarTroll SN 7 %	8638	 .		Turbidity Meter Type	LaMote 2020we	_	sn 177	29-5011
smarTroll SN 7 28	ny, ho	_		Facility and Unit:	'Icut Ha	immond	Project No :GW6	581
le mare established				Calibr	ration log			
	Standard Lot # / Date of Expiration	Temp of Standard (°C)	Value of Standard	Initial Reading	Post-Cal Reading	Acceptable Range	Pass?	Comments
Specific Conductance (μS/cm)	21870KD	21.15	4490	4589.0	4490	+/- 5 %	Yes No	
pH (4)	OBJOS	4.17	4.00	4.00	4.0	+/- 0 1 SU	Yes No	
Mid-Day pH (4) check	2101006 Sizi	U.77	1 4.00	7.08	7.0	+/- 0 1 SU	(Yes) No	
рН (7)		4	7.00	1 4	4	+/- 0.1 SU	Yes No	
Mid-Day pH (7) check			7.00			+/- 0.1 SU	Yes No	
pH (10)	टाज्याहर अधिकार	22.59	10.00	10.00	10.60	+/- 0 1 SU	Yes No	
Mid-Day pH (10) check			10.00			+/- 0 1 SU	Yes No	
ORP (mV)	chine in 1	22.44	228	777.6	825	+/- 20mV	Yes No	
DO (%) (1pt, 100% water saturated air cal)			100	106.95	100	+/- 6 % saturation	Yes No	
Turbidity 0 NTU			0	80.0	0.06	+/- 0.5 NTU	Yes No	
Turbidity 1 NTU			1.00	0.91	1.00	+/- 0 5 NTU	Yes No	
Turbidity 10 NTU			10.00	7.32	10.02	+/- 0 5 NTU	Yes No	

APPENDIX D

Statistical Analysis Report

GROUNDWATER STATS CONSULTING

SWFPR

February 28, 2022

Southern Company Services Attn: Ms. Kristen Jurinko 241 Ralph McGill Blvd. NE, Bin 10160 Atlanta, Georgia 30308

Re: Plant Hammond Ash Pond 4 (AP-4)

August 2021 Sample Event – Statistical Analysis

Dear Ms. Jurinko,

Sampling began for Hammond AP-4 in 2016, and at least 8 background samples have been collected at each of the groundwater monitoring wells analyzed in this report. The monitoring well network, as provided by Southern Company Services, consists of the following:

- Upgradient well: HGWA-47, HGWA-48D, HGWA-111, HGWA-112, and HGWA-113
- o **Downgradient wells:** HGWC-101, HGWC-102, HGWC-103, HGWC-105, HGWC-107, HGWC-109, HGWC-117, and HGWC-118
- Piezometer: HGWC-117A

Note that downgradient well HGWC-102 was first sampled in October 2019 and currently has at least 8 samples; therefore, data from this well were evaluated during this statistical

analysis. Upgradient wells HGWA-47 and HGWA-48D were first sampled in September 2020 and currently have a maximum of 6 samples which were pooled with neighboring upgradient well data for construction of interwell prediction limits. Upgradient well data are included in construction of interwell prediction limits when a minimum of 2 samples are available. Since piezometer HGWC-117A was first sampled in August 2021 and has only been sampled twice, data were included on time series and box plots, but no formal statistics were required. Data from this well will be evaluated with confidence intervals once a minimum of 4 samples have been collected.

Data were sent electronically to Groundwater Stats Consulting, and the statistical analysis was reviewed by Andrew Collins, Project Manager of Groundwater Stats Consulting.

The Coal Combustion Residuals (CCR) program consists of the following constituents listed below. The terms "constituent" and "parameter" are interchangeable.

- Appendix III (Detection Monitoring) boron, calcium, chloride, fluoride, pH, sulfate, and TDS
- Appendix IV (Assessment Monitoring) antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, combined radium 226 + 228, fluoride, lead, lithium, mercury, molybdenum, selenium, and thallium

Note that when there are no detections present in downgradient wells for a given constituent, statistical analyses are not required. A summary of Appendix IV downgradient and delineation well/constituent pairs with 100% non-detects follows this letter.

For all constituents, a substitution of the most recent reporting limit is used for non-detect data. This generally gives the most conservative limit in each case. In the case of lithium, historical reporting limits vary among the wells. Therefore, the reporting limit of 0.03 mg/L was substituted across all wells, which is the most recent reporting limit provided by the laboratory.

Time series plots for Appendix III and IV parameters at all wells are provided for the purpose of screening data at these wells (Figure A). Additionally, a separate section of box plots is included for all constituents at upgradient and downgradient wells (Figure B). The time series plots are used to initially screen for suspected outliers and trends, while the box plots provide visual representation of variation within individual wells and between all wells. Values in background which have been flagged as outliers may be seen in a lighter font and as a disconnected symbol on the graphs. A summary of flagged outliers follows this report (Figure C).

Data at all wells were initially evaluated during the background screening described below for the following: 1) outliers; 2) trends; 3) most appropriate statistical method for Appendix III parameters based on site characteristics of groundwater data upgradient of the facility; and 4) eligibility of downgradient wells when intrawell statistical methods are recommended. Power curves were provided with the screening and demonstrated that the selected statistical methods for Appendix III parameters comply with the USEPA Unified Guidance. The EPA suggests the selected statistical method should provide at least 55% power at 3 standard deviations or at least 80% power at 4 standard deviations.

Statistical Methods – Appendix III Parameters

Appendix III parameters are evaluated using interwell prediction limits combined with a 1-of-2 resample plan for all constituents: boron, calcium, chloride, fluoride, pH, sulfate, and TDS.

Parametric prediction limits are utilized when the screened historical data follow a normal or transformed-normal distribution. When data cannot be normalized or the majority of data are non-detects, a nonparametric test is utilized. While the false positive rate associated with the parametric limits is based on an annual 10% (5% per semi-annual event) as recommended by the EPA Unified Guidance (2009), the false positive rate associated with the nonparametric limits is dependent upon the available background sample size, number of future comparisons, and verification resample plan. The distribution of data is tested using the Shapiro-Wilk/Shapiro-Francia test for normality. After testing for normality and performing any adjustments as discussed below (US EPA, 2009), data are analyzed using either parametric or non-parametric prediction limits.

- No statistical analyses are required on wells and analytes containing 100% nondetects (USEPA Unified Guidance, 2009, Chapter 6).
- When data contain <15% non-detects in background, simple substitution of one-half the reporting limit is utilized in the statistical analysis. The reporting limit utilized for non-detects is the most recent practical quantification limit (PQL) as reported by the laboratory.
- When data contain between 15-50% non-detects, the Kaplan-Meier nondetect adjustment is applied to the background data. This technique adjusts the mean and standard deviation of the historical concentrations to account for concentrations below the reporting limit.
- Nonparametric prediction limits are used on data containing greater than 50% non-detects.

Note that values shown on data pages reflect raw data and any non-detects that have been substituted with one-half of the reporting limit will be shown as the original reporting limit.

Natural systems continuously evolve due to physical changes made to the environment. Examples include capping a landfill, paving areas near a well, or lining a drainage channel to prevent erosion. Periodic updating of background statistical limits is necessary to accommodate these types of changes. In the interwell case, prediction limits are updated with upgradient well data during each event after careful screening for any new outliers. In some cases, an earlier portion of data may require deselection prior to construction of limits to provide sensitive limits that will rapidly detect changes in groundwater quality. Even though the data are excluded from the calculation, the values will continue to be reported and shown in tables and graphs. When this step is required a summary of any adjusted records will be provided. No records were adjusted at this time.

Summary of Background Screening Conducted in April 2019

Outlier Analysis

Time series plots were used to identify suspected outliers, or extreme values that would result in limits that are not representative of the current background data population. Suspected outliers at all wells for Appendix III and Appendix IV parameters were formally tested using Tukey's box plot method and, when identified, flagged in the computer database with "o" and deselected prior to construction of statistical limits.

Using the Tukey box plot method, a few outliers were identified. Often, when the most recent value is identified as an outlier, values are not flagged in the database at this time as they may represent a possible trend. If future values do not remain at similar concentrations, these values will be flagged as outliers and deselected. Several low values exist in the data sets and appear on the graphs as possible low outliers relative to the laboratory's Practical Quantitation Limit. However, these values are observed trace values (i.e. measurements reported by the laboratory between the Method Detection Limit and the Practical Quantitation Limit) and, therefore, were not flagged as outliers.

Of the outliers identified by Tukey's method, only one outlier was flagged as all other values are similar to remaining measurements within a given well or neighboring wells, or were reported non-detects.

Additionally, when any values are flagged in the database as outliers, they are plotted in a disconnected and lighter symbol on the time series graph. The accompanying data

pages display the flagged value in a lighter font as well. A substitution of the most recent reporting limit was applied when varying detection limits existed in data.

Seasonality

No obvious seasonal patterns were observed on the time series plots for any of the detected data; therefore, no deseasonalizing adjustments were made to the data. When seasonal patterns are observed, data may be deseasonalized so that the resulting limits will correctly account for the seasonality as a predictable pattern rather than random variation or a release.

Trend Tests

While trends may be identified by visual inspection, a quantification of the trend and its significance is needed. The Sen's Slope/Mann Kendall trend test was used to evaluate all data at each well to identify statistically significant increasing or decreasing trends. In the absence of suspected contamination, significant trending data are typically not included as part of the background data used for construction of prediction limits. This step serves to eliminate the trend and, thus, reduce variation in background. When statistically significant decreasing trends are present, all available data are evaluated to determine whether earlier concentration levels are significantly different than current reported concentrations and will be deselected as necessary. When any records of data are truncated for the reasons above, a summary report will be provided to show the date ranges used in construction of the statistical limits.

The results of the trend analyses were included with the screening and showed a few statistically significant decreasing and increasing trends for the Appendix III parameters. Most trends noted were relatively low in magnitude when compared to average concentrations, and the background period is short; therefore, no adjustments were made to the data sets.

<u>Appendix III – Determination of Spatial Variation</u>

The Analysis of Variance (ANOVA) was used to statistically evaluate differences in average concentrations among upgradient wells, which assists in identifying the most appropriate statistical approach. Interwell tests, which compare downgradient well data to statistical limits constructed from pooled upgradient well data, are appropriate when average concentrations are similar across upgradient wells. Intrawell tests, which compare compliance data from a single well to screened historical data within the same well, are appropriate when upgradient wells exhibit spatial variation; when statistical limits

constructed from upgradient wells would not be conservative from a regulatory perspective; and when downgradient water quality is unimpacted compared to upgradient water quality for the same parameter.

The ANOVA identified no variation among upgradient well data for boron or fluoride, making these constituents eligible for interwell analyses. Variation was noted for calcium, chloride, pH, sulfate, and TDS. While data were further tested for intrawell eligibility during the screening, interwell methods will be used for all Appendix III constituents in accordance with Georgia EPD requirements.

Statistical Evaluation of Appendix III Parameters – August 2021

All Appendix III parameters were analyzed using interwell prediction limits. Background (upgradient) well data were re-assessed for potential outliers during this analysis. Values in background which have been flagged as outliers may be seen in a lighter font and as a disconnected symbol on the graphs. No new values were flagged and a summary of previously flagged outliers follows this report (Figure C).

Interwell Prediction Limits

Interwell prediction limits, combined with a 1-of-2 resample plan, were constructed using all historical upgradient well data through August 2021 (Figure D). Interwell prediction limits pool upgradient well data to establish a background limit for an individual constituent. The August 2021 sample from each downgradient well is compared to the background limit to determine whether statistically significant increases (SSIs) are present. Note that during this analysis, the reporting limit for boron decreased from 0.1 mg/L to 0.04 mg/L. While this resulted in a decrease for the interwell prediction limit, this did not result in any additional exceedances.

In the event of an initial exceedance of compliance well data, the 1-of-2 resample plan allows for collection of one additional sample to determine whether the initial exceedance is confirmed. When a resample confirms the initial exceedance, a statistically significant increase is identified and further research would be required to identify the cause of the exceedance (i.e. impact from the site, natural variation, or an off-site source). If the resample falls within the statistical limit, the initial exceedance is considered to be a false positive result and, therefore, no exceedance is noted and no further action is necessary. If no resample is collected, the original result is considered a confirmed exceedance. Several prediction limit exceedances were noted for Appendix III parameters. A summary table of the interwell prediction limits follows this letter.

<u>Trend Test Evaluation – Appendix III</u>

When prediction limit exceedances are identified in downgradient wells, data are further evaluated using the Sen's Slope/Mann Kendall trend test to determine whether concentrations are statistically increasing, decreasing, or stable (Figure E). Upgradient wells are included in the trend analyses for all parameters found to exceed their prediction limit in downgradient wells to identify whether similar patterns exist upgradient of the site. When trends are present in upgradient trends, it is an indication of natural variability in groundwater unrelated to practices at the site. A summary of the trend test results follows this letter. Statistically significant trends were noted for the following well/constituent pairs:

Increasing

Boron: HGWC-107

• Calcium: HGWC-105 and HGWCA-113 (upgradient)

Decreasing

• Boron: HGWC-109

• Sulfate: HGWA-113 (upgradient)

Statistical Methods – Appendix IV Parameters

Appendix IV parameters are evaluated by statistically comparing the mean or median of each downgradient well/constituent pair against corresponding Groundwater Protection Standards (GWPS). The GWPS may be either regulatory (Maximum Containment Limits (MCL) or CCR rule-specified limits) or site-specific limits that are based on upgradient background groundwater quality. Site-specific background limits are determined using tolerance limits, and the comparison of downgradient means or medians to GWPS is performed using confidence intervals. The methods are described below.

Statistical Evaluation of Appendix IV Parameters - August 2021

For Appendix IV parameters, confidence intervals for each downgradient well/constituent pair were compared against corresponding Groundwater Protection Standards (GWPS). GWPS were developed as described below. Well/constituent pairs that have 100% non-detects do not require analysis. Data from upgradient wells for Appendix IV parameters are reassessed for outliers during each analysis. No new values were flagged and a summary of previously flagged outliers follows this report (Figure C).

Interwell Upper Tolerance Limits

First, interwell tolerance limits were used to calculate site-specific background limits from all available pooled upgradient well data through August 2021 for Appendix IV constituents (Figure F). As mentioned above, a reporting limit of 0.03 mg/L was substituted across all wells for lithium. Parametric tolerance limits are used when data follow a normal or transformed-normal distribution. When data contained greater than 50% non-detects or did not follow a normal or transformed-normal distribution, non-parametric tolerance limits were used. The background limits were then used when determining the groundwater protection standard (GWPS) under Georgia EPD Rule 391-3-4-.10(6)(a). Georgia EPD has not incorporated the updated GWPS into the current Georgia EPD Rules for Solid Waste Management 391-3-4-.10(6)(a); therefore, for sites regulated under Georgia EPD Rules, the GWPS is:

- The MCL or
- The background concentration when an MCL is not established or when the background concentration is higher than the MCL

Groundwater Protection Standards

Following the above Georgia EPD Rule requirements, GWPS were established for statistical comparison of Appendix IV constituents for the August 2021 sample event according to the state rules (Figure G).

Confidence Intervals

To complete the statistical comparison to GWPS, confidence intervals were constructed for the Appendix IV constituents in each downgradient well (Figure H). As mentioned above, well/constituent pairs with 100% non-detects did not require statistics, which includes all downgradient wells for molybdenum. The Sanitas software was used to calculate the tolerance limits and the confidence intervals. Those confidence intervals were compared to the GWPS established using the Georgia EPD Rules 391-3-4-.10(6)(a). Only when the entire confidence interval is above a GWPS is the downgradient well/constituent pair considered to exceed its respective standard. A summary of the confidence intervals follows this letter. If there is an exceedance of the GWPS, a statistically significant level (SSL) exceedance is identified. Note that reporting limits decreased for the following constituents during this analysis:

• Selenium from 0.01 mg/L to 0.005 mg/L

As a result, background limits were lower for selenium. However, the established MCL was higher than the background limits; therefore, the GWPS was not affected. Additionally, some of the confidence intervals constructed on downgradient wells resulted in decreased upper and lower confidence limits since all historical non-detects within a given well are replaced with the most recent reporting limit. A summary of the confidence intervals follows this letter. Exceedances were identified for the following well/constituent pairs:

• Cobalt: HGWC-117

Resample Reports – September 2021

Additional data were collected in September 2021 for all Appendix III and IV constituents in downgradient well HGWC-117 and piezometer HGWC-117A. The resample data for piezometer HGWC-117A are plotted on time series graphs only.

Interwell prediction limits were constructed for Appendix III parameters, using pooled upgradient well data through August 2021, to compare the September 2021 sample at well HGWC-117 (Figure I). Exceedances were identified for the following well/constituent pairs:

Boron: HGWC-117Sulfate: HGWC-117

Confidence intervals were constructed for well HGWC-117 and were compared to the established GWPS (Figure J). An exceedance was identified for the following well/constituent pair:

• Cobalt: HGWC-117

Thank you for the opportunity to assist you in the statistical analysis of groundwater quality for Hammond AP-4. If you have any questions or comments, please feel free to contact us.

For Groundwater Stats Consulting,

Abdul Diane

Groundwater Analyst

Andrew T. Collins Project Manager

Aldling

Sanitas™ v.9.6.31 . UC

100% Non-Detects: Downgradient Appendix IV

Analysis Run 10/13/2021 4:33 PM View: Appendix IV
Plant Hammond Client: Southern Company Data: Hammond AP-4

Antimony (mg/L)

HGWC-101, HGWC-105, HGWC-109, HGWC-117, HGWC-118

Arsenic (mg/L)

HGWC-103, HGWC-105, HGWC-107

Beryllium (mg/L)

HGWC-102, HGWC-105, HGWC-107, HGWC-109

Cadmium (mg/L)

HGWC-105, HGWC-109, HGWC-118

Cobalt (mg/L)

HGWC-107

Lithium (mg/L)

HGWC-101

Molybdenum (mg/L)

HGWC-101, HGWC-102, HGWC-103, HGWC-105, HGWC-107, HGWC-109, HGWC-117, HGWC-118

Selenium (mg/L)

HGWC-101, HGWC-103, HGWC-105, HGWC-107, HGWC-109, HGWC-117, HGWC-118

Thallium (mg/L)

HGWC-101, HGWC-103, HGWC-105, HGWC-107, HGWC-109, HGWC-117, HGWC-118

Appendix III Interwell Prediction Limits - Significant Results

Plant Hammond Client: Southern Company Data: Hammond AP-4 Printed 10/13/2021, 3:49 PM

Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	Sig.	Bg N	Bg Mean	Std. Dev.	%NDs	ND Adj.	Transform	<u>Alpha</u>	Method
Boron (mg/L)	HGWC-101	0.02002	n/a	8/16/2021	0.13	Yes	54	0.2065	0.03296	20.37	Kaplan-Meie	rx^(1/3)	0.0009403	Param Inter 1 of 2
Boron (mg/L)	HGWC-102	0.02002	n/a	8/13/2021	2.4	Yes	54	0.2065	0.03296	20.37	Kaplan-Meie	rx^(1/3)	0.0009403	Param Inter 1 of 2
Boron (mg/L)	HGWC-103	0.02002	n/a	8/16/2021	3.2	Yes	54	0.2065	0.03296	20.37	Kaplan-Meie	rx^(1/3)	0.0009403	Param Inter 1 of 2
Boron (mg/L)	HGWC-105	0.02002	n/a	8/13/2021	1.2	Yes	54	0.2065	0.03296	20.37	Kaplan-Meie	rx^(1/3)	0.0009403	Param Inter 1 of 2
Boron (mg/L)	HGWC-107	0.02002	n/a	8/13/2021	0.73	Yes	54	0.2065	0.03296	20.37	Kaplan-Meie	rx^(1/3)	0.0009403	Param Inter 1 of 2
Boron (mg/L)	HGWC-109	0.02002	n/a	8/13/2021	0.24	Yes	54	0.2065	0.03296	20.37	Kaplan-Meie	rx^(1/3)	0.0009403	Param Inter 1 of 2
Boron (mg/L)	HGWC-117	0.02002	n/a	8/19/2021	0.78	Yes	54	0.2065	0.03296	20.37	Kaplan-Meie	rx^(1/3)	0.0009403	Param Inter 1 of 2
Boron (mg/L)	HGWC-118	0.02002	n/a	8/13/2021	0.59	Yes	54	0.2065	0.03296	20.37	Kaplan-Meie	rx^(1/3)	0.0009403	Param Inter 1 of 2
Calcium (mg/L)	HGWC-102	73.3	n/a	8/13/2021	119	Yes	54	n/a	n/a	0	n/a	n/a	0.0006486	NP Inter (normality) 1 of 2
Calcium (mg/L)	HGWC-103	73.3	n/a	8/16/2021	124	Yes	54	n/a	n/a	0	n/a	n/a	0.0006486	NP Inter (normality) 1 of 2
Calcium (mg/L)	HGWC-105	73.3	n/a	8/13/2021	102	Yes	54	n/a	n/a	0	n/a	n/a	0.0006486	NP Inter (normality) 1 of 2
Calcium (mg/L)	HGWC-118	73.3	n/a	8/13/2021	84.3	Yes	54	n/a	n/a	0	n/a	n/a	0.0006486	NP Inter (normality) 1 of 2
Chloride (mg/L)	HGWC-103	6.743	n/a	8/16/2021	10.4	Yes	54	1.066	0.4274	0	None	In(x)	0.0009403	Param Inter 1 of 2
pH (s.u.)	HGWC-101	7.54	5.47	8/16/2021	5.4	Yes	60	n/a	n/a	0	n/a	n/a	0.001038	NP Inter (normality) 1 of 2
pH (s.u.)	HGWC-102	7.54	5.47	8/13/2021	5.45	Yes	60	n/a	n/a	0	n/a	n/a	0.001038	NP Inter (normality) 1 of 2
Sulfate (mg/L)	HGWC-101	18.71	n/a	8/16/2021	72.1	Yes	54	0.7984	1.08	5.556	None	In(x)	0.0009403	Param Inter 1 of 2
Sulfate (mg/L)	HGWC-102	18.71	n/a	8/13/2021	248	Yes	54	0.7984	1.08	5.556	None	In(x)	0.0009403	Param Inter 1 of 2
Sulfate (mg/L)	HGWC-103	18.71	n/a	8/16/2021	354	Yes	54	0.7984	1.08	5.556	None	In(x)	0.0009403	Param Inter 1 of 2
Sulfate (mg/L)	HGWC-105	18.71	n/a	8/13/2021	142	Yes	54	0.7984	1.08	5.556	None	In(x)	0.0009403	Param Inter 1 of 2
Sulfate (mg/L)	HGWC-107	18.71	n/a	8/13/2021	112	Yes	54	0.7984	1.08	5.556	None	In(x)	0.0009403	Param Inter 1 of 2
Sulfate (mg/L)	HGWC-109	18.71	n/a	8/13/2021	24.4	Yes	54	0.7984	1.08	5.556	None	In(x)	0.0009403	Param Inter 1 of 2
Sulfate (mg/L)	HGWC-117	18.71	n/a	8/19/2021	108	Yes	54	0.7984	1.08	5.556	None	In(x)	0.0009403	Param Inter 1 of 2
Sulfate (mg/L)	HGWC-118	18.71	n/a	8/13/2021	75.1	Yes	54	0.7984	1.08	5.556	None	In(x)	0.0009403	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	HGWC-102	302.5	n/a	8/13/2021	647	Yes	53	4.997	0.8691	0	None	x^(1/3)	0.0009403	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	HGWC-103	302.5	n/a	8/16/2021	672	Yes	53	4.997	0.8691	0	None	x^(1/3)	0.0009403	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	HGWC-105	302.5	n/a	8/13/2021	441	Yes	53	4.997	0.8691	0	None	x^(1/3)	0.0009403	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	HGWC-118	302.5	n/a	8/13/2021	336	Yes	53	4.997	0.8691	0	None	x^(1/3)	0.0009403	Param Inter 1 of 2

Appendix III Interwell Prediction Limits - All Results

Plant Hammond Client: Southern Company Data: Hammond AP-4 Printed 10/13/2021, 3:49 PM

Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	Sig.	Bg N	Bg Mean	Std. Dev.	%NDs	ND Adj.	Transform	<u>Alpha</u>	Method
Boron (mg/L)	HGWC-101	0.02002	n/a	8/16/2021	0.13	Yes	54	0.2065	0.03296	20.37	Kaplan-Meie	rx^(1/3)	0.0009403	Param Inter 1 of 2
Boron (mg/L)	HGWC-102	0.02002	n/a	8/13/2021	2.4	Yes	54	0.2065	0.03296	20.37	Kaplan-Meie	rx^(1/3)	0.0009403	Param Inter 1 of 2
Boron (mg/L)	HGWC-103	0.02002	n/a	8/16/2021	3.2	Yes	54	0.2065	0.03296	20.37	Kaplan-Meie	rx^(1/3)	0.0009403	Param Inter 1 of 2
Boron (mg/L)	HGWC-105	0.02002	n/a	8/13/2021	1.2	Yes	54	0.2065	0.03296	20.37	Kaplan-Meie	rx^(1/3)	0.0009403	Param Inter 1 of 2
Boron (mg/L)	HGWC-107	0.02002	n/a	8/13/2021	0.73	Yes	54	0.2065	0.03296	20.37	Kaplan-Meie	rx^(1/3)	0.0009403	Param Inter 1 of 2
Boron (mg/L)	HGWC-109	0.02002	n/a	8/13/2021	0.24	Yes	54	0.2065	0.03296	20.37	Kaplan-Meie	rx^(1/3)	0.0009403	Param Inter 1 of 2
Boron (mg/L)	HGWC-117	0.02002	n/a	8/19/2021	0.78	Yes	54	0.2065	0.03296	20.37	Kaplan-Meie	rx^(1/3)	0.0009403	Param Inter 1 of 2
Boron (mg/L)	HGWC-118	0.02002	n/a	8/13/2021	0.59	Yes	54	0.2065	0.03296	20.37	Kaplan-Meie	rx^(1/3)	0.0009403	Param Inter 1 of 2
Calcium (mg/L)	HGWC-101	73.3	n/a	8/16/2021	22.8	No	54	n/a	n/a	0	n/a	n/a	0.0006486	NP Inter (normality) 1 of 2
Calcium (mg/L)	HGWC-102	73.3	n/a	8/13/2021	119	Yes	54	n/a	n/a	0	n/a	n/a	0.0006486	NP Inter (normality) 1 of 2
Calcium (mg/L)	HGWC-103	73.3	n/a	8/16/2021	124	Yes	54	n/a	n/a	0	n/a	n/a	0.0006486	NP Inter (normality) 1 of 2
Calcium (mg/L)	HGWC-105	73.3	n/a	8/13/2021	102	Yes	54	n/a	n/a	0	n/a	n/a	0.0006486	NP Inter (normality) 1 of 2
Calcium (mg/L)	HGWC-107	73.3	n/a	8/13/2021	57.8	No	54	n/a	n/a	0	n/a	n/a	0.0006486	NP Inter (normality) 1 of 2
Calcium (mg/L)	HGWC-109	73.3	n/a	8/13/2021	43.5	No	54	n/a	n/a	0	n/a	n/a	0.0006486	NP Inter (normality) 1 of 2
Calcium (mg/L)	HGWC-117	73.3	n/a	8/19/2021	40.9	No	54	n/a	n/a	0	n/a	n/a	0.0006486	NP Inter (normality) 1 of 2
Calcium (mg/L)	HGWC-118	73.3	n/a	8/13/2021	84.3	Yes	54	n/a	n/a	0	n/a	n/a	0.0006486	NP Inter (normality) 1 of 2
Chloride (mg/L)	HGWC-101	6.743	n/a	8/16/2021	5.4	No	54	1.066	0.4274	0	None	ln(x)	0.0009403	Param Inter 1 of 2
Chloride (mg/L)	HGWC-102	6.743	n/a	8/13/2021	6	No	54	1.066	0.4274	0	None	ln(x)	0.0009403	Param Inter 1 of 2
Chloride (mg/L)	HGWC-103	6.743	n/a	8/16/2021	10.4	Yes	54	1.066	0.4274	0	None	In(x)	0.0009403	Param Inter 1 of 2
Chloride (mg/L)	HGWC-105	6.743	n/a	8/13/2021	3.7	No	54	1.066	0.4274	0	None	ln(x)	0.0009403	Param Inter 1 of 2
Chloride (mg/L)	HGWC-107	6.743	n/a	8/13/2021	3.1	No	54	1.066	0.4274	0	None	ln(x)	0.0009403	Param Inter 1 of 2
Chloride (mg/L)	HGWC-109	6.743	n/a	8/13/2021	4	No	54	1.066	0.4274	0	None	ln(x)	0.0009403	Param Inter 1 of 2
Chloride (mg/L)	HGWC-117	6.743	n/a	8/19/2021	4	No	54	1.066	0.4274	0	None	ln(x)	0.0009403	Param Inter 1 of 2
Chloride (mg/L)	HGWC-118	6.743	n/a	8/13/2021	4	No	54	1.066	0.4274	0	None	ln(x)	0.0009403	Param Inter 1 of 2
Fluoride (mg/L)	HGWC-101	0.166	n/a	8/16/2021		No	60	0.07488	0.04656	26.67	Kaplan-Meier		0.0009403	Param Inter 1 of 2
Fluoride (mg/L)	HGWC-102	0.166	n/a	8/13/2021	0.1ND	No	60	0.07488	0.04656	26.67	Kaplan-Meier	· No	0.0009403	Param Inter 1 of 2
Fluoride (mg/L)	HGWC-103	0.166	n/a	8/16/2021		No	60	0.07488	0.04656	26.67	Kaplan-Meier		0.0009403	Param Inter 1 of 2
Fluoride (mg/L)	HGWC-105	0.166	n/a	8/13/2021		No	60	0.07488	0.04656	26.67	Kaplan-Meier		0.0009403	Param Inter 1 of 2
Fluoride (mg/L)	HGWC-107	0.166	n/a	8/13/2021	0.1ND	No	60	0.07488	0.04656	26.67	Kaplan-Meier		0.0009403	Param Inter 1 of 2
Fluoride (mg/L)	HGWC-109	0.166	n/a	8/13/2021		No	60	0.07488	0.04656	26.67	Kaplan-Meier		0.0009403	Param Inter 1 of 2
Fluoride (mg/L)	HGWC-117	0.166	n/a	8/19/2021		No	60	0.07488	0.04656	26.67	Kaplan-Meier		0.0009403	Param Inter 1 of 2
Fluoride (mg/L)	HGWC-118	0.166	n/a	8/13/2021		No	60	0.07488	0.04656	26.67	Kaplan-Meier		0.0009403	Param Inter 1 of 2
pH (s.u.)	HGWC-101	7.54	5.47	8/16/2021		Yes	60	n/a	n/a	0	n/a	n/a	0.001038	NP Inter (normality) 1 of 2
pH (s.u.)	HGWC-102	7.54	5.47	8/13/2021		Yes		n/a	n/a	0	n/a	n/a	0.001038	NP Inter (normality) 1 of 2
pH (s.u.)	HGWC-103	7.54	5.47	8/16/2021		No	60	n/a	n/a	0	n/a	n/a	0.001038	NP Inter (normality) 1 of 2
pH (s.u.)	HGWC-105	7.54	5.47	8/13/2021		No	60	n/a	n/a	0	n/a	n/a	0.001038	NP Inter (normality) 1 of 2
pH (s.u.)	HGWC-107	7.54	5.47	8/13/2021	6.11	No	60	n/a	n/a	0	n/a	n/a	0.001038	NP Inter (normality) 1 of 2
pH (s.u.)	HGWC-109	7.54	5.47	8/13/2021		No	60	n/a	n/a	0	n/a	n/a	0.001038	NP Inter (normality) 1 of 2
pH (s.u.)	HGWC-117	7.54	5.47	8/19/2021		No	60	n/a	n/a	0	n/a	n/a	0.001038	NP Inter (normality) 1 of 2
pH (s.u.)	HGWC-118	7.54	5.47	8/13/2021		No	60	n/a	n/a	0	n/a	n/a	0.001038	NP Inter (normality) 1 of 2
Sulfate (mg/L)	HGWC-101	18.71	n/a	8/16/2021		Yes	54	0.7984	1.08	5.556	None	ln(x)	0.0009403	Param Inter 1 of 2
Sulfate (mg/L)	HGWC-102	18.71	n/a	8/13/2021		Yes		0.7984	1.08		None	In(x)	0.0009403	Param Inter 1 of 2
Sulfate (mg/L)	HGWC-103	18.71	n/a	8/16/2021	354	Yes	54	0.7984	1.08	5.556	None	In(x)	0.0009403	Param Inter 1 of 2
Sulfate (mg/L)	HGWC-105	18.71	n/a	8/13/2021	142	Yes	54	0.7984	1.08	5.556	None	ln(x)	0.0009403	Param Inter 1 of 2
Sulfate (mg/L)	HGWC-107	18.71	n/a	8/13/2021	112	Yes	54	0.7984	1.08	5.556	None	In(x)	0.0009403	Param Inter 1 of 2
Sulfate (mg/L)	HGWC-109	18.71	n/a	8/13/2021	24.4	Yes	54	0.7984	1.08	5.556	None	In(x)	0.0009403	Param Inter 1 of 2
Sulfate (mg/L)	HGWC-117	18.71	n/a	8/19/2021		Yes		0.7984	1.08		None	In(x)	0.0009403	Param Inter 1 of 2
Sulfate (mg/L)	HGWC-118	18.71	n/a	8/13/2021		Yes		0.7984	1.08		None	In(x)	0.0009403	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	HGWC-101	302.5	n/a	8/16/2021		No		4.997	0.8691	0	None	x^(1/3)	0.0009403	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	HGWC-102	302.5	n/a	8/13/2021		Yes		4.997	0.8691	0	None	x^(1/3)	0.0009403	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	HGWC-103	302.5	n/a	8/16/2021		Yes		4.997	0.8691	0	None	x^(1/3)	0.0009403	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	HGWC-105	302.5	n/a	8/13/2021		Yes		4.997	0.8691	0	None	x^(1/3)	0.0009403	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	HGWC-107	302.5	n/a	8/13/2021		No		4.997	0.8691	0	None	x^(1/3)	0.0009403	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	HGWC-109	302.5	n/a	8/13/2021		No	53	4.997	0.8691	0	None	x^(1/3)	0.0009403	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	HGWC-117	302.5	n/a	8/19/2021		No		4.997	0.8691	0	None	x^(1/3)	0.0009403	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	HGWC-118	302.5	n/a	8/13/2021		Yes		4.997	0.8691	0	None	x^(1/3)	0.0009403	Param Inter 1 of 2

Appendix III Interwell Trend Test Summary - Significant Results Plant Hammond Client: Southern Company Data: Hammond AP-4 Printed 10/13/2021, 4:04 PM

	Plant Hammond	Client: Southern	Company	Data: Ham	mond AP-4	Printed 1	0/13/2021,	4:04 PM			
Constituent	Well	Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Boron (mg/L)	HGWC-107	0.03493	54	53	Yes	15	0	n/a	n/a	0.01	NP
Boron (mg/L)	HGWC-109	-0.03174	-59	-53	Yes	15	0	n/a	n/a	0.01	NP
Calcium (mg/L)	HGWA-113 (bg)	0.3831	56	48	Yes	14	0	n/a	n/a	0.01	NP
Calcium (mg/L)	HGWC-105	5.461	75	53	Yes	15	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	HGWA-113 (bg)	-1.511	-57	-48	Yes	14	0	n/a	n/a	0.01	NP

Appendix III Interwell Trend Test Summary - All Results

	Plant Hammond	Client: Southern	Company	Data: Ham	mond AP-4	Printed 1	10/13/2021,	4:04 PM			
Constituent	Well	Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Boron (mg/L)	HGWA-111 (bg)	0	-1	-48	No	14	21.43	n/a	n/a	0.01	NP
Boron (mg/L)	HGWA-112 (bg)	-0.0006186	-19	-48	No	14	28.57	n/a	n/a	0.01	NP
Boron (mg/L)	HGWA-113 (bg)	0.0002897	5	48	No	14	14.29	n/a	n/a	0.01	NP
Boron (mg/L)	HGWA-47 (bg)	0.008902	4	14	No	6	33.33	n/a	n/a	0.01	NP
Boron (mg/L)	HGWA-48D (bg)	-0.003338	-5	-14	No	6	0	n/a	n/a	0.01	NP
Boron (mg/L)	HGWC-101	0.008189	35	48	No	14	0	n/a	n/a	0.01	NP
Boron (mg/L)	HGWC-102	-0.4582	-22	-30	No	10	0	n/a	n/a	0.01	NP
Boron (mg/L)	HGWC-103	0.05703	27	53	No	15	0	n/a	n/a	0.01	NP
Boron (mg/L)	HGWC-105	0.01211	12	48	No	14	0	n/a	n/a	0.01	NP
Boron (mg/L)	HGWC-107	0.03493	54	53	Yes	15	0	n/a	n/a	0.01	NP
Boron (mg/L)	HGWC-109	-0.03174	-59	-53	Yes	15	0	n/a	n/a	0.01	NP
Boron (mg/L)	HGWC-117	0.06827	35	48	No	14	0	n/a	n/a	0.01	NP
Boron (mg/L)	HGWC-118	-0.009865	-12	-48	No	14	0	n/a	n/a	0.01	NP
Calcium (mg/L)	HGWA-111 (bg)	2.338	17	48	No	14	0	n/a	n/a	0.01	NP
Calcium (mg/L)	HGWA-112 (bg)	0.07036	20	48	No	14	0	n/a	n/a	0.01	NP
Calcium (mg/L)	HGWA-113 (bg)	0.3831	56	48	Yes	14	0	n/a	n/a	0.01	NP
Calcium (mg/L)	HGWA-47 (bg)	-1.977	-2	-14	No	6	0	n/a	n/a	0.01	NP
Calcium (mg/L)	HGWA-48D (bg)	0	0	14	No	6	0	n/a	n/a	0.01	NP
Calcium (mg/L)	HGWC-102	-13.74	-12	-30	No	10	0	n/a	n/a	0.01	NP
Calcium (mg/L)	HGWC-103	4.868	47	53	No	15	0	n/a	n/a	0.01	NP
Calcium (mg/L)	HGWC-105	5.461	75	53	Yes	15	0	n/a	n/a	0.01	NP
Calcium (mg/L)	HGWC-118	1.341	37	53	No	15	0	n/a	n/a	0.01	NP
Chloride (mg/L)	HGWA-111 (bg)	-0.07374	-11	-48	No	14	0	n/a	n/a	0.01	NP
Chloride (mg/L)	HGWA-112 (bg)	0	3	48	No	14	0	n/a	n/a	0.01	NP
Chloride (mg/L)	HGWA-113 (bg)	-0.08329	-44	-48	No	14	0	n/a	n/a	0.01	NP
Chloride (mg/L)	HGWA-47 (bg)	-0.4451	-4	-14	No	6	0	n/a	n/a	0.01	NP
Chloride (mg/L)	HGWA-48D (bg)	0	-3	-14	No	6	0	n/a	n/a	0.01	NP
Chloride (mg/L)	HGWC-103	0.339	43	53	No	15	0	n/a	n/a	0.01	NP
pH (s.u.)	HGWA-111 (bg)	0.0425	9	58	No	16	0	n/a	n/a	0.01	NP
pH (s.u.)	HGWA-112 (bg)	-0.02404	-36	-58	No	16	0	n/a	n/a	0.01	NP
pH (s.u.)	HGWA-113 (bg)	0.02701	38	58	No	16	0	n/a	n/a	0.01	NP
pH (s.u.)	HGWA-47 (bg)	-0.04171	-1	-14	No	6	0	n/a	n/a	0.01	NP
pH (s.u.)	HGWA-48D (bg)	0.02086	2	14	No	6	0	n/a	n/a	0.01	NP
pH (s.u.)	HGWC-101	0.01297	35	63	No	17	0	n/a	n/a	0.01	NP
pH (s.u.)	HGWC-102	0.06557	7	30	No	10	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	HGWA-111 (bg)	-0.02369	-18	-48	No	14	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	HGWA-112 (bg)	-0.02426	-40	-48	No	14	21.43	n/a	n/a	0.01	NP
Sulfate (mg/L)	HGWA-113 (bg)	-1.511	-57	-48	Yes	14	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	HGWA-47 (bg)	-2.098	-9	-14	No	6	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	HGWA-48D (bg)	-3.129	-5	-14	No	6	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	HGWC-101	-4.001	-39	-53	No	15	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	HGWC-102	-22.81	-5	-30	No	10	10	n/a	n/a	0.01	NP
Sulfate (mg/L)	HGWC-103	3.195	11	53	No	15	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	HGWC-105	-7.471	-48	-53	No	15	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	HGWC-107	-1.198	-36	-53	No	15	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	HGWC-109	-3.066	-49	-53	No	15	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	HGWC-117	-1.092	-13	-53	No	15	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	HGWC-118	-0.8812	-18	-53	No	15	0	n/a	n/a	0.01	NP
Total Dissolved Solids (mg/L)	HGWA-111 (bg)	4.854	10	48	No	14	0	n/a	n/a	0.01	NP
Total Dissolved Solids (mg/L)	HGWA-112 (bg)	-1.162	-10	-43	No	13	0	n/a	n/a	0.01	NP
Total Dissolved Solids (mg/L)	HGWA-113 (bg)	0	-1	-48	No	14	0	n/a	n/a	0.01	NP
Total Dissolved Solids (mg/L)	HGWA-47 (bg)	11.87	1	14	No	6	0	n/a	n/a	0.01	NP
Total Dissolved Solids (mg/L)	HGWA-48D (bg)	0	0	14	No	6	0	n/a	n/a	0.01	NP
Total Dissolved Solids (mg/L)	HGWC-102	-55.37	-17	-30	No	10	0	n/a	n/a	0.01	NP
Total Dissolved Solids (mg/L)	HGWC-103	0	-1	-53	No	15	0	n/a	n/a	0.01	NP

Appendix III Interwell Trend Test Summary - All Results

Plant Hammond Client: Southern Company Data: Hammond AP-4 Printed 10/13/2021, 4:04 PM Constituent Well Slope Calc. Critical Sig. <u>N</u> %NDs Normality Xform Method <u>Alpha</u> Total Dissolved Solids (mg/L) HGWC-105 15.72 35 53 No 15 0 n/a n/a 0.01 Total Dissolved Solids (mg/L) HGWC-118 -6.518 -23 -53 No 15 0 0.01 n/a n/a NP

Page 2

Upper Tolerance Limits

Plant Hammond Client: Southern Company Data: Hammond AP-4 Printed 10/15/2021, 3:36 PM

Constituent	Upper Lim.	Lower Lim.	Date	Observ.	Sig.	Bg N	%NDs	Transform	<u>Alpha</u>	Method
Antimony (mg/L)	0.003	n/a	n/a	n/a	n/a	43	93.02	n/a	0.1102	NP Inter(NDs)
Arsenic (mg/L)	0.005	n/a	n/a	n/a	n/a	57	91.23	n/a	0.05373	NP Inter(NDs)
Barium (mg/L)	0.1	n/a	n/a	n/a	n/a	57	0	n/a	0.05373	NP Inter(normality)
Beryllium (mg/L)	0.0019	n/a	n/a	n/a	n/a	57	87.72	n/a	0.05373	NP Inter(NDs)
Cadmium (mg/L)	0.0005	n/a	n/a	n/a	n/a	57	100	n/a	0.05373	NP Inter(NDs)
Chromium (mg/L)	0.0061	n/a	n/a	n/a	n/a	57	31.58	n/a	0.05373	NP Inter(normality)
Cobalt (mg/L)	0.005	n/a	n/a	n/a	n/a	57	85.96	n/a	0.05373	NP Inter(NDs)
Combined Radium 226 & 228 (pCi/L)	1.362	n/a	n/a	n/a	n/a	57	0	No	0.05	Inter
Fluoride (mg/L)	0.1688	n/a	n/a	n/a	n/a	60	26.67	No	0.05	Inter
Lead (mg/L)	0.0016	n/a	n/a	n/a	n/a	57	63.16	n/a	0.05373	NP Inter(NDs)
Lithium (mg/L)	0.03	n/a	n/a	n/a	n/a	57	42.11	n/a	0.05373	NP Inter(normality)
Mercury (mg/L)	0.0002	n/a	n/a	n/a	n/a	43	72.09	n/a	0.1102	NP Inter(NDs)
Molybdenum (mg/L)	0.01	n/a	n/a	n/a	n/a	43	86.05	n/a	0.1102	NP Inter(NDs)
Selenium (mg/L)	0.005	n/a	n/a	n/a	n/a	43	79.07	n/a	0.1102	NP Inter(NDs)
Thallium (mg/L)	0.001	n/a	n/a	n/a	n/a	43	100	n/a	0.1102	NP Inter(NDs)

PLANT HA	MMOND AP	-4 GWPS	
Constituent Name	MCL	Background Limit	GWPS
Antimony, Total (mg/L)	0.006	0.003	0.006
Arsenic, Total (mg/L)	0.01	0.005	0.01
Barium, Total (mg/L)	2	0.1	2
Beryllium, Total (mg/L)	0.004	0.0019	0.004
Cadmium, Total (mg/L)	0.005	0.0005	0.005
Chromium, Total (mg/L)	0.1	0.0061	0.1
Cobalt, Total (mg/L)	n/a	0.005	0.005
Combined Radium, Total (pCi/L)	5	1.36	5
Fluoride, Total (mg/L)	4	0.17	4
Lead, Total (mg/L)	n/a	0.0016	0.0016
Lithium, Total (mg/L)	n/a	0.03	0.03
Mercury, Total (mg/L)	0.002	0.0002	0.002
Molybdenum, Total (mg/L)	n/a	0.01	0.01
Selenium, Total (mg/L)	0.05	0.005	0.05
Thallium, Total (mg/L)	0.002	0.001	0.002

^{*}MCL = Maximum Contaminant Level

^{*}GWPS = Groundwater Protection Standard

Confidence Intervals - Significant Results

Plant Hammond Client: Southern Company Data: Hammond AP-4 Printed 10/21/2021, 3:22 PM

Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	Compliance	Sig. N	Std. Dev.	%NDs	Transform	<u>Alpha</u>	Method
Cobalt (mg/L)	HGWC-117	0.01056	0.005291	0.005	Yes 15	0.00389	0	No	0.01	Param.
Mercury (mg/L)	HGWC-103	0.0005	0.00027	0.0002	Yes 11	0.0001382	81.82	No	0.006	NP (NDs)
Mercury (mg/L)	HGWC-105	0.0005	0.0005	0.0002	Yes 11	0.00008442	90.91	No	0.006	NP (NDs)
Mercury (mg/L)	HGWC-107	0.0005	0.0005	0.0002	Yes 11	0.0001254	90.91	No	0.006	NP (NDs)
Mercury (mg/L)	HGWC-117	0.0005	0.0003	0.0002	Yes 11	0.0001374	81.82	No	0.006	NP (NDs)

Confidence Intervals - All Results

Plant Hammond Client: Southern Company Data: Hammond AP-4 Printed 10/21/2021, 3:22 PM

Constituent	Well	Upper Lim.	Lower Lim.	Compliance	Sig.	<u>N</u>	Std. Dev.	%NDs	Transform	<u>Alpha</u>	Method
Antimony (mg/L)	HGWC-102	0.003	0.00076	0.006	No	9	0.0007467	88.89	No	0.002	NP (NDs)
Antimony (mg/L)	HGWC-103	0.003	0.003	0.006	No	11	0.0002412	90.91	No	0.006	NP (NDs)
Antimony (mg/L)	HGWC-107	0.003	0.003	0.006	No	11	0.0005729	90.91	No	0.006	NP (NDs)
Arsenic (mg/L)	HGWC-101	0.005	0.00039	0.01	No	15	0.00119	93.33	No	0.01	NP (NDs)
Arsenic (mg/L)	HGWC-102	0.005	0.00065	0.01	No	10	0.00223	60	No	0.011	NP (NDs)
Arsenic (mg/L)	HGWC-109	0.002628	0.001457	0.01	No	15	0.0009493	0	sqrt(x)	0.01	Param.
Arsenic (mg/L)	HGWC-117	0.005	0.00037	0.01	No	15	0.001195	93.33	No	0.01	NP (NDs)
Arsenic (mg/L)	HGWC-118	0.005	0.001	0.01	No	15	0.001033	93.33	No	0.01	NP (NDs)
Barium (mg/L)	HGWC-101	0.04648	0.04023	2	No	15	0.004608	0	No	0.01	Param.
Barium (mg/L)	HGWC-102	0.03383	0.02637	2	No	10	0.004175	0	No	0.01	Param.
Barium (mg/L) Barium (mg/L)	HGWC-103 HGWC-105	0.04095 0.0745	0.0354 0.066	2	No No	15 15	0.004409 0.0049	0	x^2 No	0.01 0.01	Param. NP (normality)
Barium (mg/L)	HGWC-103	0.0745	0.03685	2	No	15	0.0049	0	x^4	0.01	Param.
Barium (mg/L)	HGWC-109	0.08824	0.08183	2	No	15	0.004732	0	No	0.01	Param.
Barium (mg/L)	HGWC-117	0.05093	0.04098	2	No	15	0.007342	0	No	0.01	Param.
Barium (mg/L)	HGWC-118	0.06321	0.05287	2	No	15	0.007629	0	No	0.01	Param.
Beryllium (mg/L)	HGWC-101	0.0005	0.000059	0.004	No	15	0.0002263	53.33	No	0.01	NP (NDs)
Beryllium (mg/L)	HGWC-103	0.0005	0.000088	0.004	No	15	0.0001797	80	No	0.01	NP (NDs)
Beryllium (mg/L)	HGWC-117	0.0005	0.000066	0.004	No	15	0.00022	60	No	0.01	NP (NDs)
Beryllium (mg/L)	HGWC-118	0.0005	0.000093	0.004	No	15	0.0001051	93.33	No	0.01	NP (NDs)
Cadmium (mg/L)	HGWC-101	0.0002208	0.0001439	0.005	No	15	0.00005678	13.33	No	0.01	Param.
Cadmium (mg/L)	HGWC-102	0.0007379	0.0002681	0.005	No	10	0.0002633	0	No	0.01	Param.
Cadmium (mg/L)	HGWC-103	0.0007934	0.0006692	0.005	No	15	0.00009164	0	No	0.01	Param.
Cadmium (mg/L)	HGWC-107	0.00025	0.00009	0.005	No	15	0.00007792	53.33	No	0.01	NP (NDs)
Cadmium (mg/L)	HGWC-117	0.0008752	0.0005888	0.005	No	15	0.0002113	0	No	0.01	Param.
Chromium (mg/L)	HGWC-101	0.005	0.00075	0.1	No	15	0.00195	73.33	No	0.01	NP (NDs)
Chromium (mg/L)	HGWC-102	0.005	0.00063	0.1	No	10	0.001868	80	No	0.011	NP (NDs)
Chromium (mg/L)	HGWC-103	0.005	0.00069	0.1	No	15	0.002021	60	No	0.01	NP (NDs)
Chromium (mg/L)	HGWC-105	0.005	0.00064	0.1	No	15	0.001963	73.33	No	0.01	NP (NDs)
Chromium (mg/L)	HGWC-107	0.005	0.00074	0.1	No	15	0.0011	93.33	No	0.01	NP (NDs)
Chromium (mg/L)	HGWC-109	0.005	0.0014	0.1	No	15 15	0.001412	86.67	No	0.01 0.01	NP (NDs)
Chromium (mg/L) Chromium (mg/L)	HGWC-117 HGWC-118	0.005 0.005	0.001 0.00098	0.1 0.1	No No	15	0.0019 0.00186	73.33 66.67	No No	0.01	NP (NDs) NP (NDs)
Cobalt (mg/L)	HGWC-101	0.003	0.00098	0.005	No	15	0.0005693	6.667	No	0.01	Param.
						10	0.0000000		140	0.01	i didiii.
Cobalt (mg/L)	HGWC-102	0.002228	0.0009205		Nο	10	0.000888		x^(1/3)	0.01	Param
Cobalt (mg/L) Cobalt (mg/L)	HGWC-102 HGWC-103	0.002228 0.002324	0.0009205 0.001782	0.005	No No	10 15	0.000888 0.0003998	0	x^(1/3) No	0.01 0.01	Param. Param.
Cobalt (mg/L)	HGWC-103	0.002324	0.001782	0.005 0.005	No	15	0.0003998	0	No	0.01	Param.
Cobalt (mg/L) Cobalt (mg/L)				0.005 0.005 0.005			0.0003998 0.0008864	0			
Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L)	HGWC-103 HGWC-105	0.002324 0.0025	0.001782 0.00045	0.005 0.005	No No	15 15	0.0003998	0 0 26.67	No No	0.01 0.01	Param. NP (normality)
Cobalt (mg/L) Cobalt (mg/L)	HGWC-103 HGWC-105 HGWC-109	0.002324 0.0025 0.002163	0.001782 0.00045 0.001246	0.005 0.005 0.005 0.005	No No No	15 15 15	0.0003998 0.0008864 0.000677	0 0 26.67 0	No No No	0.01 0.01 0.01	Param. NP (normality) Param.
Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L)	HGWC-103 HGWC-105 HGWC-109 HGWC-117	0.002324 0.0025 0.002163 0.01056	0.001782 0.00045 0.001246 0.005291	0.005 0.005 0.005 0.005 0.005	No No No Yes	15 15 15 15	0.0003998 0.0008864 0.000677 0.00389	0 0 26.67 0 0	No No No	0.01 0.01 0.01 0.01	Param. NP (normality) Param. Param.
Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L)	HGWC-103 HGWC-105 HGWC-109 HGWC-117 HGWC-118	0.002324 0.0025 0.002163 0.01056 0.0025	0.001782 0.00045 0.001246 0.005291 0.0004	0.005 0.005 0.005 0.005 0.005 0.005	No No No Yes No	15 15 15 15 15	0.0003998 0.0008864 0.000677 0.00389 0.001028	0 0 26.67 0 0 46.67	No No No No	0.01 0.01 0.01 0.01 0.01	Param. NP (normality) Param. Param. NP (normality)
Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L)	HGWC-103 HGWC-105 HGWC-109 HGWC-117 HGWC-118 HGWC-101	0.002324 0.0025 0.002163 0.01056 0.0025 0.9272	0.001782 0.00045 0.001246 0.005291 0.0004 0.4325	0.005 0.005 0.005 0.005 0.005 0.005	No No No Yes No No	15 15 15 15 15 15	0.0003998 0.0008864 0.000677 0.00389 0.001028 0.365	0 0 26.67 0 0 46.67	No No No No No	0.01 0.01 0.01 0.01 0.01 0.01	Param. NP (normality) Param. Param. NP (normality) Param.
Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L)	HGWC-103 HGWC-105 HGWC-109 HGWC-117 HGWC-118 HGWC-101 HGWC-102	0.002324 0.0025 0.002163 0.01056 0.0025 0.9272 1.353	0.001782 0.00045 0.001246 0.005291 0.0004 0.4325 0.5045	0.005 0.005 0.005 0.005 0.005 0.005 5	No No No Yes No No	15 15 15 15 15 15 9	0.0003998 0.0008864 0.000677 0.00389 0.001028 0.365 0.4397	0 0 26.67 0 0 46.67 0	No No No No No No	0.01 0.01 0.01 0.01 0.01 0.01	Param. NP (normality) Param. Param. NP (normality) Param. Param.
Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L)	HGWC-103 HGWC-105 HGWC-109 HGWC-117 HGWC-118 HGWC-101 HGWC-102 HGWC-103	0.002324 0.0025 0.002163 0.01056 0.0025 0.9272 1.353 0.9516	0.001782 0.00045 0.001246 0.005291 0.0004 0.4325 0.5045 0.4448	0.005 0.005 0.005 0.005 0.005 0.005 5 5	No No No Yes No No No	15 15 15 15 15 15 15	0.0003998 0.0008864 0.000677 0.00389 0.001028 0.365 0.4397 0.3739	0 0 26.67 0 0 46.67 0 0 0	No No No No No No	0.01 0.01 0.01 0.01 0.01 0.01 0.01	Param. NP (normality) Param. Param. NP (normality) Param. Param. Param.
Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L)	HGWC-103 HGWC-105 HGWC-109 HGWC-117 HGWC-118 HGWC-101 HGWC-102 HGWC-103 HGWC-105 HGWC-107 HGWC-109	0.002324 0.0025 0.002163 0.01056 0.0025 0.9272 1.353 0.9516 0.9251 1.136 0.8434	0.001782 0.00045 0.001246 0.005291 0.0004 0.4325 0.5045 0.4448 0.5184 0.5262 0.5213	0.005 0.005 0.005 0.005 0.005 0.005 5 5 5	No No No Yes No No No No No No No No No No No No No	15 15 15 15 15 15 15 15 15 15 15	0.0003998 0.0008864 0.000677 0.00389 0.001028 0.365 0.4397 0.3739 0.3001 0.4499	0 0 26.67 0 46.67 0 0 0	No No No No No No No No No No No No No N	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	Param. NP (normality) Param. Param. NP (normality) Param. Param. Param. Param. Param. Param. Param. Param.
Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L)	HGWC-103 HGWC-105 HGWC-109 HGWC-117 HGWC-118 HGWC-101 HGWC-102 HGWC-103 HGWC-105 HGWC-107 HGWC-109 HGWC-117	0.002324 0.0025 0.002163 0.01056 0.0025 0.9272 1.353 0.9516 0.9251 1.136 0.8434 0.8698	0.001782 0.00045 0.001246 0.005291 0.0004 0.4325 0.5045 0.4448 0.5184 0.5262 0.5213	0.005 0.005 0.005 0.005 0.005 0.005 5 5 5	No No No Yes No No No No No No No No No No No No No	15 15 15 15 15 15 15 15 15 15 15	0.0003998 0.0008864 0.000677 0.00389 0.001028 0.365 0.4397 0.3739 0.3001 0.4499 0.2376 0.3655	0 0 26.67 0 46.67 0 0 0	No No No No No No No No No No No No No N	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	Param. NP (normality) Param. Param. NP (normality) Param. Param. Param. Param. Param. Param. Param. Param. Param. Param.
Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L)	HGWC-103 HGWC-105 HGWC-109 HGWC-117 HGWC-118 HGWC-101 HGWC-102 HGWC-103 HGWC-105 HGWC-107 HGWC-109 HGWC-117 HGWC-118	0.002324 0.0025 0.002163 0.01056 0.0025 0.9272 1.353 0.9516 0.9251 1.136 0.8434 0.8698 1.186	0.001782 0.00045 0.001246 0.005291 0.0004 0.4325 0.5045 0.4448 0.5184 0.5262 0.5213 0.3744 0.4655	0.005 0.005 0.005 0.005 0.005 0.005 5 5 5	No No Yes No No No No No No No No No No No No No	15 15 15 15 15 15 15 15 15 15 15 15	0.0003998 0.0008864 0.000677 0.00389 0.001028 0.365 0.4397 0.3739 0.3001 0.4499 0.2376 0.3655 0.5089	0 0 26.67 0 46.67 0 0 0 0	No No No No No No No No No No No No No N	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	Param. NP (normality) Param. Param. NP (normality) Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. Param.
Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Fluoride (mg/L)	HGWC-103 HGWC-105 HGWC-109 HGWC-117 HGWC-118 HGWC-101 HGWC-102 HGWC-103 HGWC-105 HGWC-107 HGWC-109 HGWC-117 HGWC-118 HGWC-101	0.002324 0.0025 0.002163 0.01056 0.0025 0.9272 1.353 0.9516 0.9251 1.136 0.8434 0.8698 1.186 0.1	0.001782 0.00045 0.001246 0.005291 0.0004 0.4325 0.5045 0.4448 0.5184 0.5262 0.5213 0.3744 0.4655 0.05	0.005 0.005 0.005 0.005 0.005 0.005 5 5 5	No No Yes No No No No No No No No No No No No No	15 15 15 15 15 15 15 15 15 15 15 15 15 1	0.0003998 0.0008864 0.000677 0.00389 0.001028 0.365 0.4397 0.3739 0.3001 0.4499 0.2376 0.3655 0.5089	0 0 26.67 0 0 46.67 0 0 0 0 0 0 0	No No No No No No No No No No No No No N	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	Param. NP (normality) Param. Param. NP (normality) Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. Param.
Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Fluoride (mg/L) Fluoride (mg/L)	HGWC-103 HGWC-105 HGWC-109 HGWC-117 HGWC-118 HGWC-101 HGWC-102 HGWC-103 HGWC-105 HGWC-107 HGWC-109 HGWC-117 HGWC-118 HGWC-101 HGWC-101	0.002324 0.0025 0.002163 0.01056 0.0025 0.9272 1.353 0.9516 0.9251 1.136 0.8434 0.8698 1.186 0.1	0.001782 0.00045 0.001246 0.005291 0.0004 0.4325 0.5045 0.4448 0.5184 0.5262 0.5213 0.3744 0.4655 0.05	0.005 0.005 0.005 0.005 0.005 0.005 5 5 5 5 5 5 5 5 4	No No No No No No No No No No No No No N	15 15 15 15 15 15 15 15 15 15 15 15 15 1	0.0003998 0.0008864 0.000677 0.00389 0.001028 0.365 0.4397 0.3739 0.3001 0.4499 0.2376 0.3655 0.5089 0.02082 0.03795	0 0 26.67 0 0 46.67 0 0 0 0 0 0 0 0 0 0 9	No No No No No No No No No No No No No N	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	Param. NP (normality) Param. Param. NP (normality) Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. Param.
Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L)	HGWC-103 HGWC-105 HGWC-109 HGWC-117 HGWC-118 HGWC-101 HGWC-102 HGWC-103 HGWC-105 HGWC-107 HGWC-109 HGWC-117 HGWC-118 HGWC-101 HGWC-101 HGWC-102 HGWC-102	0.002324 0.0025 0.002163 0.01056 0.0025 0.9272 1.353 0.9516 0.9251 1.136 0.8434 0.8698 1.186 0.1 0.1	0.001782 0.00045 0.001246 0.005291 0.0004 0.4325 0.5045 0.4448 0.5184 0.5262 0.5213 0.3744 0.4655 0.05 0.1	0.005 0.005 0.005 0.005 0.005 0.005 5 5 5 5 5 5 5 5 4 4	No No No No No No No No No No No No No N	15 15 15 15 15 15 15 15 15 15 15 15 15 1	0.0003998 0.0008864 0.000677 0.00389 0.001028 0.365 0.4397 0.3739 0.3001 0.4499 0.2376 0.3655 0.5089 0.02082 0.03795 0.02358	0 0 26.67 0 0 46.67 0 0 0 0 0 0 0 0 87.5	No No No No No No No No No No No No No N	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	Param. NP (normality) Param. Param. NP (normality) Param.
Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L)	HGWC-103 HGWC-105 HGWC-109 HGWC-117 HGWC-118 HGWC-101 HGWC-102 HGWC-103 HGWC-105 HGWC-107 HGWC-109 HGWC-117 HGWC-118 HGWC-101 HGWC-101 HGWC-102 HGWC-103 HGWC-103	0.002324 0.0025 0.002163 0.01056 0.0025 0.9272 1.353 0.9516 0.9251 1.136 0.8434 0.8698 1.186 0.1 0.1	0.001782 0.00045 0.001246 0.005291 0.0004 0.4325 0.5045 0.4448 0.5184 0.5262 0.5213 0.3744 0.4655 0.05 0.1 0.06	0.005 0.005 0.005 0.005 0.005 0.005 5 5 5 5 5 5 5 4 4 4	No No No No No No No No No No No No No N	15 15 15 15 15 15 15 15 15 15 15 15 16 10 16	0.0003998 0.0008864 0.000677 0.00389 0.001028 0.365 0.4397 0.3739 0.3001 0.4499 0.2376 0.3655 0.5089 0.02082 0.03795 0.02358 0.03042	0 0 26.67 0 0 46.67 0 0 0 0 0 0 0 0 87.5 90 75 56.25	No No No No No No No No No No No No No N	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	Param. NP (normality) Param. Param. NP (normality) Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. NP (NDs) NP (NDs) NP (NDs)
Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L)	HGWC-103 HGWC-105 HGWC-109 HGWC-117 HGWC-118 HGWC-101 HGWC-102 HGWC-103 HGWC-105 HGWC-107 HGWC-109 HGWC-117 HGWC-118 HGWC-101 HGWC-101 HGWC-102 HGWC-103 HGWC-105 HGWC-105	0.002324 0.0025 0.002163 0.01056 0.0025 0.9272 1.353 0.9516 0.9251 1.136 0.8434 0.8698 1.186 0.1 0.1 0.13 0.13	0.001782 0.00045 0.001246 0.005291 0.0004 0.4325 0.5045 0.4448 0.5184 0.5262 0.5213 0.3744 0.4655 0.05 0.1 0.06 0.07 0.057	0.005 0.005 0.005 0.005 0.005 0.005 5 5 5 5 5 5 4 4 4	No No No No No No No No No No No No No N	15 15 15 15 15 15 15 15 15 15 15 15 16 10 16 16	0.0003998 0.0008864 0.000677 0.00389 0.001028 0.365 0.4397 0.3739 0.3001 0.4499 0.2376 0.3655 0.5089 0.02082 0.03795 0.02358 0.03042 0.03732	0 0 26.67 0 46.67 0 0 0 0 0 0 0 0 87.5 90 75 56.25 56.25	No No No No No No No No No No No No No N	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	Param. NP (normality) Param. Param. NP (normality) Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs)
Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L)	HGWC-103 HGWC-105 HGWC-109 HGWC-117 HGWC-118 HGWC-101 HGWC-102 HGWC-103 HGWC-105 HGWC-107 HGWC-109 HGWC-117 HGWC-118 HGWC-101 HGWC-101 HGWC-102 HGWC-103 HGWC-103	0.002324 0.0025 0.002163 0.01056 0.0025 0.9272 1.353 0.9516 0.9251 1.136 0.8434 0.8698 1.186 0.1 0.1	0.001782 0.00045 0.001246 0.005291 0.0004 0.4325 0.5045 0.4448 0.5184 0.5262 0.5213 0.3744 0.4655 0.05 0.1 0.06	0.005 0.005 0.005 0.005 0.005 0.005 5 5 5 5 5 5 5 4 4 4	No No No No No No No No No No No No No N	15 15 15 15 15 15 15 15 15 15 15 15 16 10 16	0.0003998 0.0008864 0.000677 0.00389 0.001028 0.365 0.4397 0.3739 0.3001 0.4499 0.2376 0.3655 0.5089 0.02082 0.03795 0.02358 0.03042 0.03732 0.03597	0 0 26.67 0 46.67 0 0 0 0 0 0 0 0 87.5 90 75 56.25 56.25 12.5	No No No No No No No No No No No No No N	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	Param. NP (normality) Param. Param. NP (normality) Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. NP (NDs) NP (NDs) NP (NDs)
Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Fluoride (mg/L)	HGWC-103 HGWC-105 HGWC-109 HGWC-117 HGWC-118 HGWC-101 HGWC-102 HGWC-105 HGWC-107 HGWC-109 HGWC-117 HGWC-118 HGWC-101 HGWC-102 HGWC-103 HGWC-105 HGWC-105 HGWC-107 HGWC-107	0.002324 0.0025 0.002163 0.01056 0.0025 0.9272 1.353 0.9516 0.9251 1.136 0.8434 0.8698 1.186 0.1 0.1 0.1 0.13 0.13 0.16 0.1208	0.001782 0.00045 0.001246 0.005291 0.0004 0.4325 0.5045 0.4448 0.5184 0.5262 0.5213 0.3744 0.4655 0.05 0.1 0.06 0.07 0.057 0.07397	0.005 0.005 0.005 0.005 0.005 0.005 5 5 5 5 5 4 4 4 4	No No No No No No No No No No No No No N	15 15 15 15 15 15 15 15 15 15 15 15 16 16 16 16	0.0003998 0.0008864 0.000677 0.00389 0.001028 0.365 0.4397 0.3739 0.3001 0.4499 0.2376 0.3655 0.5089 0.02082 0.03795 0.02358 0.03042 0.03732	0 0 26.67 0 46.67 0 0 0 0 0 0 0 0 87.5 90 75 56.25 56.25	No No No No No No No No No No No No No N	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	Param. NP (normality) Param. NP (normality) Param. NP (normality) Param. Param. Param. Param. Param. Param. Param. Param. Param. Poram. NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) Param.
Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L)	HGWC-103 HGWC-105 HGWC-109 HGWC-117 HGWC-118 HGWC-101 HGWC-102 HGWC-105 HGWC-107 HGWC-109 HGWC-117 HGWC-118 HGWC-101 HGWC-102 HGWC-103 HGWC-105 HGWC-107 HGWC-109 HGWC-107 HGWC-109 HGWC-107 HGWC-109 HGWC-107	0.002324 0.0025 0.002163 0.01056 0.0025 0.9272 1.353 0.9516 0.9251 1.136 0.8434 0.8698 1.186 0.1 0.1 0.1 0.13 0.13 0.16 0.1208 0.11	0.001782 0.00045 0.001246 0.005291 0.0004 0.4325 0.5045 0.4448 0.5184 0.5262 0.5213 0.3744 0.4655 0.05 0.1 0.06 0.07 0.057 0.07397 0.09	0.005 0.005 0.005 0.005 0.005 0.005 5 5 5 5 5 4 4 4 4 4	No No No No No No No No No No No No No N	15 15 15 15 15 15 15 15 15 15 15 15 16 10 16 16 16 16	0.0003998 0.0008864 0.000677 0.00389 0.001028 0.365 0.4397 0.3739 0.3001 0.4499 0.2376 0.3655 0.5089 0.02082 0.03795 0.02358 0.03042 0.03732 0.03597 0.05844	0 0 26.67 0 46.67 0 0 0 0 0 0 0 87.5 90 75 56.25 56.25 56.25	No No No No No No No No No No No No No N	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	Param. NP (normality) Param. NP (normality) Param. NP (normality) Param. Param. Param. Param. Param. Param. Param. Param. NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) Param. NP (NDs)
Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Fluoride (mg/L)	HGWC-103 HGWC-105 HGWC-109 HGWC-117 HGWC-118 HGWC-101 HGWC-102 HGWC-105 HGWC-107 HGWC-109 HGWC-117 HGWC-101 HGWC-102 HGWC-103 HGWC-105 HGWC-105 HGWC-107 HGWC-109 HGWC-107 HGWC-109 HGWC-107 HGWC-107 HGWC-109 HGWC-109 HGWC-117	0.002324 0.0025 0.002163 0.01056 0.0025 0.9272 1.353 0.9516 0.9251 1.136 0.8434 0.8698 1.186 0.1 0.1 0.13 0.13 0.16 0.1208 0.11 0.3	0.001782 0.00045 0.001246 0.005291 0.0004 0.4325 0.5045 0.4448 0.5184 0.5262 0.5213 0.3744 0.4655 0.05 0.1 0.06 0.07 0.067 0.07397 0.09 0.075	0.005 0.005 0.005 0.005 0.005 0.005 5 5 5 5 5 4 4 4 4 4 4	No No No No No No No No No No No No No N	15 15 15 15 15 15 15 15 15 15 15 16 10 16 16 16 16 16 17	0.0003998 0.0008864 0.000677 0.00389 0.001028 0.365 0.4397 0.3739 0.3001 0.4499 0.2376 0.3655 0.5089 0.02082 0.03795 0.02358 0.03042 0.03732 0.03597 0.05844 0.2024	0 0 26.67 0 46.67 0 0 0 0 0 0 87.5 90 75 56.25 56.25 56.25 0	No No No No No No No No No No No No No N	0.01 0.01	Param. NP (normality) Param. NP (normality) Param. NP (normality) Param. Param. Param. Param. Param. Param. Param. Param. NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs)
Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Fluoride (mg/L)	HGWC-103 HGWC-105 HGWC-109 HGWC-117 HGWC-118 HGWC-101 HGWC-102 HGWC-103 HGWC-105 HGWC-107 HGWC-109 HGWC-117 HGWC-101 HGWC-101 HGWC-102 HGWC-103 HGWC-105 HGWC-107 HGWC-101 HGWC-101 HGWC-105 HGWC-105 HGWC-107	0.002324 0.0025 0.002163 0.01056 0.0025 0.9272 1.353 0.9516 0.9251 1.136 0.8434 0.8698 1.186 0.1 0.1 0.13 0.13 0.16 0.1208 0.11 0.3 0.001	0.001782 0.00045 0.001246 0.005291 0.0004 0.4325 0.5045 0.4448 0.5184 0.5262 0.5213 0.3744 0.4655 0.05 0.1 0.06 0.07 0.057 0.07397 0.09 0.075 0.0009	0.005 0.005 0.005 0.005 0.005 5 5 5 5 5 4 4 4 4 4 4 4 4	No No No No No No No No No No No No No N	15 15 15 15 15 15 15 15 15 15 15 15 16 16 16 16 16 16 17 15	0.0003998 0.0008864 0.000677 0.00389 0.001028 0.365 0.4397 0.3739 0.3001 0.4499 0.2376 0.3655 0.5089 0.02082 0.03795 0.02358 0.03042 0.03732 0.03597 0.05844 0.2024 0.00002582	0 0 26.67 0 46.67 0 0 0 0 0 0 0 87.5 90 75 56.25 56.25 12.5 56.25 0 93.33	No No No No No No No No No No No No No N	0.01 0.01	Param. NP (normality) Param. NP (normality) Param. NP (normality) Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs)
Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Fluoride (mg/L) Lead (mg/L)	HGWC-103 HGWC-105 HGWC-109 HGWC-117 HGWC-118 HGWC-101 HGWC-102 HGWC-103 HGWC-105 HGWC-107 HGWC-109 HGWC-117 HGWC-101 HGWC-101 HGWC-102 HGWC-103 HGWC-105 HGWC-101 HGWC-105 HGWC-101 HGWC-105 HGWC-101 HGWC-101 HGWC-101 HGWC-101 HGWC-101	0.002324 0.0025 0.002163 0.01056 0.0025 0.9272 1.353 0.9516 0.9251 1.136 0.8434 0.8698 1.186 0.1 0.1 0.13 0.13 0.16 0.1208 0.11 0.3 0.001	0.001782 0.00045 0.001246 0.005291 0.0004 0.4325 0.5045 0.4448 0.5184 0.5262 0.5213 0.3744 0.4655 0.05 0.1 0.06 0.07 0.057 0.07397 0.09 0.075 0.0009 0.001	0.005 0.005 0.005 0.005 0.005 0.005 5 5 5 5 5 4 4 4 4 4 4 4 4 4 0.0016 0.0016	No No No No No No No No No No No No No N	15 15 15 15 15 15 15 15 15 15 15 15 16 16 16 16 16 16 17 15 15	0.0003998 0.0008864 0.000677 0.00389 0.001028 0.365 0.4397 0.3739 0.3001 0.4499 0.2376 0.3655 0.5089 0.02082 0.03795 0.02358 0.03042 0.03732 0.03597 0.05844 0.2024 0.00002582 0.0002814	0 0 26.67 0 46.67 0 0 0 0 0 0 0 0 87.5 90 75 56.25 56.25 12.5 56.25 0 93.33	NO NO NO NO NO NO NO NO NO NO NO NO NO N	0.01 0.01	Param. NP (normality) Param. NP (normality) Param. NP (normality) Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs)
Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Lead (mg/L) Lead (mg/L) Lead (mg/L) Lead (mg/L) Lead (mg/L) Lead (mg/L)	HGWC-103 HGWC-105 HGWC-109 HGWC-117 HGWC-118 HGWC-101 HGWC-102 HGWC-103 HGWC-105 HGWC-107 HGWC-109 HGWC-117 HGWC-118 HGWC-101 HGWC-102 HGWC-103 HGWC-105 HGWC-101 HGWC-105 HGWC-105 HGWC-105 HGWC-105 HGWC-105 HGWC-105 HGWC-105 HGWC-105 HGWC-105 HGWC-107 HGWC-109 HGWC-117 HGWC-118 HGWC-101	0.002324 0.0025 0.002163 0.01056 0.0025 0.9272 1.353 0.9516 0.9251 1.136 0.8434 0.8698 1.186 0.1 0.1 0.13 0.13 0.16 0.1208 0.11 0.3 0.001 0.001	0.001782 0.00045 0.001246 0.005291 0.0004 0.4325 0.5045 0.4448 0.5184 0.5262 0.5213 0.3744 0.4655 0.05 0.1 0.06 0.07 0.057 0.07397 0.09 0.075 0.0009 0.001 0.00024	0.005 0.005 0.005 0.005 0.005 0.005 5 5 5 5 5 4 4 4 4 4 4 4 4 0.0016 0.0016	No No No No No No No No No No No No No N	15 15 15 15 15 15 15 15 15 15 15 15 15 1	0.0003998 0.0008864 0.000677 0.00389 0.001028 0.365 0.4397 0.3739 0.3001 0.4499 0.2376 0.3655 0.5089 0.02082 0.03795 0.02358 0.03042 0.03732 0.03597 0.05844 0.2024 0.00002582 0.0002814 0.0003768	0 0 26.67 0 46.67 0 0 0 0 0 0 0 87.5 90 75 56.25 56.25 12.5 56.25 0 93.33 90 66.67	NO NO NO NO NO NO NO NO NO NO NO NO NO N	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	Param. NP (normality) Param. NP (normality) Param. NP (normality) Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs)
Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Lead (mg/L) Lead (mg/L) Lead (mg/L) Lead (mg/L) Lead (mg/L) Lead (mg/L) Lead (mg/L) Lead (mg/L) Lead (mg/L) Lead (mg/L)	HGWC-103 HGWC-105 HGWC-109 HGWC-117 HGWC-118 HGWC-101 HGWC-102 HGWC-103 HGWC-105 HGWC-107 HGWC-109 HGWC-117 HGWC-118 HGWC-101 HGWC-102 HGWC-103 HGWC-105 HGWC-107 HGWC-108 HGWC-101 HGWC-101 HGWC-102 HGWC-101 HGWC-101 HGWC-102 HGWC-103 HGWC-105 HGWC-107	0.002324 0.0025 0.002163 0.01056 0.0025 0.9272 1.353 0.9516 0.9251 1.136 0.8434 0.8698 1.186 0.1 0.1 0.13 0.13 0.16 0.1208 0.11 0.3 0.001 0.001 0.001	0.001782 0.00045 0.001246 0.005291 0.0004 0.4325 0.5045 0.4448 0.5184 0.5262 0.5213 0.3744 0.4655 0.05 0.1 0.06 0.07 0.057 0.07397 0.09 0.075 0.0009 0.001 0.00024 0.000068	0.005 0.005 0.005 0.005 0.005 0.005 5 5 5	No No No No No No No No No No No No No N	15 15 15 15 15 15 15 15 15 15 15 15 16 16 16 16 16 16 16 17 15 15 15 15 15 15 15 15 15 15 15 15 15	0.0003998 0.0008864 0.000677 0.00389 0.001028 0.365 0.4397 0.3739 0.3001 0.4499 0.2376 0.3655 0.5089 0.02082 0.03795 0.02358 0.03042 0.03732 0.03597 0.05844 0.2024 0.00002582 0.0002814 0.0003768 0.000428	0 0 26.67 0 46.67 0 0 0 0 0 0 0 0 87.5 90 75 56.25 56.25 12.5 56.25 0 93.33 90 66.67 73.33	NO NO NO NO NO NO NO NO NO NO NO NO NO N	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	Param. NP (normality) Param. Param. NP (normality) Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. NP (NDs)
Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Lead (mg/L) Lead (mg/L) Lead (mg/L) Lead (mg/L) Lead (mg/L) Lead (mg/L) Lead (mg/L) Lead (mg/L) Lead (mg/L) Lead (mg/L) Lead (mg/L) Lead (mg/L) Lead (mg/L) Lead (mg/L)	HGWC-103 HGWC-105 HGWC-109 HGWC-117 HGWC-118 HGWC-101 HGWC-102 HGWC-103 HGWC-105 HGWC-107 HGWC-109 HGWC-117 HGWC-118 HGWC-101 HGWC-102 HGWC-103 HGWC-105 HGWC-107 HGWC-108 HGWC-101 HGWC-109 HGWC-101 HGWC-105 HGWC-107 HGWC-108 HGWC-107 HGWC-109 HGWC-101 HGWC-101 HGWC-101 HGWC-102 HGWC-101 HGWC-101 HGWC-101 HGWC-102 HGWC-101	0.002324 0.0025 0.002163 0.01056 0.0025 0.9272 1.353 0.9516 0.9251 1.136 0.8434 0.8698 1.186 0.1 0.1 0.13 0.13 0.16 0.1208 0.11 0.3 0.001 0.001 0.001	0.001782 0.00045 0.001246 0.005291 0.0004 0.4325 0.5045 0.4448 0.5184 0.5262 0.5213 0.3744 0.4655 0.05 0.1 0.06 0.07 0.057 0.07397 0.09 0.075 0.0009 0.001 0.00024 0.000068	0.005 0.005 0.005 0.005 0.005 0.005 5 5 5	No No No No No No No No No No No No No N	15 15 15 15 15 15 15 15 15 15 15 15 16 10 16 16 16 16 17 15 15 15 15 15 15 15 15 15 15 15 15 15	0.0003998 0.0008864 0.000677 0.00389 0.001028 0.365 0.4397 0.3739 0.3001 0.4499 0.2376 0.3655 0.5089 0.02082 0.03795 0.02358 0.03042 0.03732 0.03597 0.05844 0.2024 0.0002582 0.0002814 0.0003768 0.000428 0.0003796	0 0 26.67 0 46.67 0 0 0 0 0 0 0 0 87.5 90 75 56.25 56.25 12.5 56.25 0 93.33 90 66.67 73.33 73.33	NO NO NO NO NO NO NO NO NO NO NO NO NO N	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	Param. NP (normality) Param. Param. NP (normality) Param. Param. Param. Param. Param. Param. Param. Param. NP (NDs)
Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Lead (mg/L)	HGWC-103 HGWC-105 HGWC-109 HGWC-117 HGWC-118 HGWC-101 HGWC-102 HGWC-103 HGWC-105 HGWC-107 HGWC-109 HGWC-117 HGWC-118 HGWC-101 HGWC-102 HGWC-103 HGWC-105 HGWC-107 HGWC-105 HGWC-107 HGWC-105 HGWC-107 HGWC-105 HGWC-107 HGWC-109 HGWC-107 HGWC-101 HGWC-101 HGWC-102 HGWC-101	0.002324 0.0025 0.002163 0.01056 0.0025 0.9272 1.353 0.9516 0.9251 1.136 0.8434 0.8698 1.186 0.1 0.1 0.13 0.13 0.16 0.1208 0.11 0.3 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001	0.001782 0.00045 0.001246 0.005291 0.0004 0.4325 0.5045 0.4448 0.5184 0.5262 0.5213 0.3744 0.4655 0.05 0.1 0.06 0.07 0.057 0.07397 0.09 0.075 0.0009 0.001 0.00024 0.000068 0.00021 0.000058 0.00019 0.00025	0.005 0.005 0.005 0.005 0.005 0.005 5 5 5	No No No No No No No No No No No No No N	15 15 15 15 15 15 15 15 15 15 15 16 10 16 16 16 16 17 15 15 15 15 15 15 15 15 15 15 15 15 15	0.0003998 0.0008864 0.000677 0.00389 0.001028 0.365 0.4397 0.3739 0.3001 0.4499 0.2376 0.3655 0.5089 0.02082 0.03795 0.02358 0.03042 0.03732 0.03597 0.05844 0.2024 0.0002582 0.0002814 0.0003768 0.0003796 0.0003322 0.0003822 0.0003822	0 0 26.67 0 46.67 0 0 0 0 0 0 0 87.5 90 75 56.25 56.25 0 93.33 90 66.67 73.33 73.33 86.67 66.67	NO NO NO NO NO NO NO NO NO NO NO NO NO N	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	Param. NP (normality) Param. NP (normality) Param. NP (normality) Param. Param. Param. Param. Param. Param. NP (NDs)
Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Lead (mg/L)	HGWC-103 HGWC-105 HGWC-109 HGWC-117 HGWC-118 HGWC-101 HGWC-102 HGWC-103 HGWC-105 HGWC-107 HGWC-109 HGWC-117 HGWC-118 HGWC-101 HGWC-102 HGWC-103 HGWC-105 HGWC-107 HGWC-105 HGWC-107 HGWC-105 HGWC-107 HGWC-105 HGWC-107 HGWC-109 HGWC-107 HGWC-101 HGWC-101 HGWC-102 HGWC-101 HGWC-101 HGWC-102 HGWC-101 HGWC-101 HGWC-101 HGWC-101 HGWC-101 HGWC-101 HGWC-101 HGWC-101 HGWC-101 HGWC-101 HGWC-101 HGWC-101 HGWC-101 HGWC-101 HGWC-101 HGWC-101 HGWC-101	0.002324 0.0025 0.002163 0.01056 0.0025 0.9272 1.353 0.9516 0.9251 1.136 0.8434 0.8698 1.186 0.1 0.1 0.13 0.13 0.16 0.1208 0.11 0.3 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001	0.001782 0.00045 0.001246 0.005291 0.0004 0.4325 0.5045 0.4448 0.5184 0.5262 0.5213 0.3744 0.4655 0.05 0.1 0.06 0.07 0.057 0.07397 0.09 0.075 0.0009 0.001 0.00024 0.00068 0.00021 0.000058 0.00019 0.00025 0.001028	0.005 0.005 0.005 0.005 0.005 0.005 5 5 5	No No No No No No No No No No No No No N	15 15 15 15 15 15 15 15 15 15 15 16 10 16 16 16 16 17 15 15 15 15 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16	0.0003998 0.0008864 0.000677 0.00389 0.001028 0.365 0.4397 0.3739 0.3001 0.4499 0.2376 0.3655 0.5089 0.02082 0.03795 0.02358 0.03042 0.03732 0.03597 0.05844 0.2024 0.0002582 0.0002814 0.0003768 0.0003796 0.0003322 0.0003822 0.0003822 0.0003512 0.0001408	0 0 26.67 0 46.67 0 0 0 0 0 0 0 87.5 90 75 56.25 56.25 0 93.33 90 66.67 73.33 73.33 86.67 66.67 66.67	NO NO NO NO NO NO NO NO NO NO NO NO NO N	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	Param. NP (normality) Param. Param. NP (normality) Param. Param. Param. Param. Param. Param. Param. Param. NP (NDs)
Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Lead (mg/L)	HGWC-103 HGWC-105 HGWC-109 HGWC-117 HGWC-118 HGWC-101 HGWC-102 HGWC-103 HGWC-105 HGWC-107 HGWC-109 HGWC-117 HGWC-118 HGWC-101 HGWC-102 HGWC-103 HGWC-105 HGWC-107 HGWC-109 HGWC-107 HGWC-109 HGWC-107 HGWC-109 HGWC-107 HGWC-109 HGWC-117 HGWC-109 HGWC-101 HGWC-102 HGWC-101 HGWC-102 HGWC-101 HGWC-102 HGWC-101 HGWC-102 HGWC-101 HGWC-102 HGWC-103 HGWC-105 HGWC-107 HGWC-109 HGWC-107 HGWC-109 HGWC-117 HGWC-118 HGWC-101	0.002324 0.0025 0.002163 0.01056 0.0025 0.9272 1.353 0.9516 0.9251 1.136 0.8434 0.8698 1.186 0.1 0.1 0.13 0.13 0.16 0.1208 0.11 0.3 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001	0.001782 0.00045 0.001246 0.005291 0.0004 0.4325 0.5045 0.4448 0.5184 0.5262 0.5213 0.3744 0.4655 0.05 0.1 0.06 0.07 0.057 0.07397 0.09 0.075 0.0009 0.001 0.00024 0.00068 0.0001 0.00025 0.00019 0.00025 0.001028 0.0015	0.005 0.005 0.005 0.005 0.005 0.005 5 5 5	No No No No No No No No No No No No No N	15 15 15 15 15 15 15 15 15 15 15 16 10 16 16 16 16 17 15 15 15 15 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16	0.0003998 0.0008864 0.000677 0.00389 0.001028 0.365 0.4397 0.3739 0.3001 0.4499 0.2376 0.3655 0.5089 0.02082 0.03795 0.02358 0.03042 0.03732 0.03597 0.05844 0.2024 0.0002582 0.0003796 0.0003796 0.0003796 0.0003796 0.0003322 0.0003822 0.0003512 0.0001408 0.01175	0 0 26.67 0 46.67 0 0 0 0 0 0 0 0 0 0 0 75 56.25 56.25 12.5 56.25 0 93.33 90 66.67 73.33 73.33 86.67 66.67 0 66.67	NO NO NO NO NO NO NO NO NO NO NO NO NO N	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	Param. NP (normality) Param. NP (normality) Param. NP (normality) Param. Param. Param. Param. Param. Param. NP (NDs)
Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Lead (mg/L)	HGWC-103 HGWC-105 HGWC-109 HGWC-117 HGWC-118 HGWC-101 HGWC-102 HGWC-103 HGWC-105 HGWC-107 HGWC-109 HGWC-117 HGWC-118 HGWC-101 HGWC-102 HGWC-103 HGWC-105 HGWC-107 HGWC-105 HGWC-107 HGWC-105 HGWC-107 HGWC-105 HGWC-107 HGWC-109 HGWC-107 HGWC-101 HGWC-101 HGWC-102 HGWC-101 HGWC-101 HGWC-102 HGWC-101 HGWC-101 HGWC-101 HGWC-101 HGWC-101 HGWC-101 HGWC-101 HGWC-101 HGWC-101 HGWC-101 HGWC-101 HGWC-101 HGWC-101 HGWC-101 HGWC-101 HGWC-101 HGWC-101	0.002324 0.0025 0.002163 0.01056 0.0025 0.9272 1.353 0.9516 0.9251 1.136 0.8434 0.8698 1.186 0.1 0.1 0.13 0.13 0.16 0.1208 0.11 0.3 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001	0.001782 0.00045 0.001246 0.005291 0.0004 0.4325 0.5045 0.4448 0.5184 0.5262 0.5213 0.3744 0.4655 0.05 0.1 0.06 0.07 0.057 0.07397 0.09 0.075 0.0009 0.001 0.00024 0.00068 0.00021 0.000058 0.00019 0.00025 0.001028	0.005 0.005 0.005 0.005 0.005 0.005 5 5 5	No No No No No No No No No No No No No N	15 15 15 15 15 15 15 15 15 15 15 16 10 16 16 16 16 17 15 15 15 15 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16	0.0003998 0.0008864 0.000677 0.00389 0.001028 0.365 0.4397 0.3739 0.3001 0.4499 0.2376 0.3655 0.5089 0.02082 0.03795 0.02358 0.03042 0.03732 0.03597 0.05844 0.2024 0.0002582 0.0002814 0.0003768 0.0003796 0.0003322 0.0003822 0.0003822 0.0003512 0.0001408	0 0 26.67 0 46.67 0 0 0 0 0 0 0 87.5 90 75 56.25 56.25 0 93.33 90 66.67 73.33 73.33 86.67 66.67 66.67	NO NO NO NO NO NO NO NO NO NO NO NO NO N	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	Param. NP (normality) Param. Param. NP (normality) Param. Param. Param. Param. Param. Param. Param. Param. NP (NDs)

Confidence Intervals - All Results

Plant Hammond Client: Southern Company Data: Hammond AP-4 Printed 10/21/2021, 3:22 PM Well Std. Dev. %NDs <u>Transform</u> Constituent Upper Lim. Lower Lim. Compliance Sig. N <u>Alpha</u> Method HGWC-109 Lithium (mg/L) 0.03 0.001 0.03 No 15 0.01493 53.33 0.01 NP (NDs) No Lithium (mg/L) HGWC-117 0.03 0.0017 No 15 0.01147 20 0.01 NP (normality) Lithium (mg/L) HGWC-118 0.03 0.0017 0.03 No 15 0.01418 40 No 0.01 NP (normality) HGWC-101 0.0005 0.000099 0.0002 No 11 0.0001634 81.82 No 0.006 NP (NDs) Mercury (mg/L) Mercury (mg/L) HGWC-102 0.0005 0.0001 0.0002 No 9 0.0001333 88.89 No 0.002 NP (NDs) NP (NDs) Mercury (mg/L) HGWC-103 0.0005 0.00027 0.0002 Yes 11 0.0001382 81.82 No 0.006 NP (NDs) Mercury (mg/L) HGWC-105 0.0005 0.0005 0.0002 Yes 11 0.00008442 90.91 No 0.006 Mercury (mg/L) HGWC-107 0.0005 0.0005 0.0002 Yes 11 0.0001254 90.91 No 0.006 NP (NDs) Mercury (mg/L) HGWC-109 0.0005 0.00008 0.0002 No 11 0.0001699 81.82 No 0.006 NP (NDs) HGWC-117 0.0003 Yes 11 0.0001374 0.006 Mercury (mg/L) 0.0005 0.0002 81.82 No NP (NDs) HGWC-118 0.0005 0.00009 0.0002 No 11 0.0001677 0.006 NP (NDs) Mercury (mg/L) 81.82 No HGWC-102 NP (NDs) Selenium (mg/L) 0.005 0.0015 0.05 No 9 0.001167 88.89 No 0.002 HGWC-102 0.001 0.00008 0.002 No 9 0.0003067 0.002 NP (NDs) Thallium (mg/L) 88.89 No

Appendix III - Interwell Prediction Limits - Resample Results

Plant Hammond Client: Southern Company Data: Hammond AP-4 Printed 11/18/2021, 7:00 PM Std. Dev. %NDs ND Adj. Constituent Well Upper Lim. Lower Lim. Date Observ. Sig. Bg N Bg Mean Transform Alpha Method 0.03296 20.37 Kaplan-Meier x^(1/3) Boron (mg/L) HGWC-117 0.02002 n/a 9/27/2021 0.67 Yes 54 0.2065 0.0009403 Param Inter 1 of 2 0.0006486 Calcium (mg/L) HGWC-117 73.3 9/27/2021 37.5 No 54 n/a n/a 0 n/a NP Inter (normality) 1 of 2 Chloride (mg/L) HGWC-117 9/27/2021 3.4 No 54 1.066 0.4274 0 0.0009403 Param Inter 1 of 2 6.743 n/a None ln(x) Fluoride (mg/L) HGWC-117 0.166 n/a 9/27/2021 0.1ND No 60 0.07488 0.04656 26.67 Kaplan-Meier No 0.0009403 Param Inter 1 of 2 pH (s.u.) HGWC-117 7.54 5.47 9/27/2021 5.66 No 60 n/a n/a 0 n/a n/a 0.001038 NP Inter (normality) 1 of 2 5.556 None HGWC-117 18.71 n/a 9/27/2021 104 Yes 54 0.7984 1.08 0.0009403 Param Inter 1 of 2 Sulfate (mg/L) In(x) Total Dissolved Solids (mg/L) HGWC-117 302.5 9/27/2021 242 No 53 4.997 0.8691 0 None x^(1/3) 0.0009403 Param Inter 1 of 2

Confidence Interval Summary Table - Resample Significant Results

Plant Hammond Client: Southern Company Data: Hammond AP-4 Printed 11/18/2021, 2:42 PM

 Constituent
 Well
 Upper Lim.
 Lower Lim.
 Compliance
 Sig.
 N
 Sid. Dev.
 %NDs
 Transform
 Alpha
 Method

 Cobalt (mg/L)
 HGWC-117
 0.01107
 0.005667
 0.005
 Yes
 16
 0.004153
 0
 No
 0.01
 Param.

Confidence Interval Summary Table - Resample All Results

		Plant Hammond	Client: Souther	n Company	Data: H	ammo	nd AP-4 Printed	11/18/20	21, 2:42 PM		
Constituent	Well	Upper Lim.	Lower Lim.	Compliance	Sig.	<u>N</u>	Std. Dev.	%NDs	Transform	<u>Alpha</u>	Method
Arsenic (mg/L)	HGWC-117	0.005	0.00037	0.01	No	16	0.001157	93.75	No	0.01	NP (NDs)
Barium (mg/L)	HGWC-117	0.05025	0.04066	2	No	16	0.007366	0	No	0.01	Param.
Beryllium (mg/L)	HGWC-117	0.0005	0.000066	0.004	No	16	0.0002169	62.5	No	0.01	NP (NDs)
Cadmium (mg/L)	HGWC-117	0.0008863	0.0006087	0.005	No	16	0.0002133	0	No	0.01	Param.
Chromium (mg/L)	HGWC-117	0.005	0.001	0.1	No	16	0.001856	75	No	0.01	NP (NDs)
Cobalt (mg/L)	HGWC-117	0.01107	0.005667	0.005	Yes	16	0.004153	0	No	0.01	Param.
Combined Radium 226 & 228 (pCi/L)	HGWC-117	0.9055	0.4918	5	No	16	0.3601	0	x^2	0.01	Param.
Fluoride (mg/L)	HGWC-117	0.11	0.1	4	No	17	0.05662	58.82	No	0.01	NP (NDs)
Lead (mg/L)	HGWC-117	0.001	0.00019	0.0016	No	16	0.0003748	68.75	No	0.01	NP (NDs)
Lithium (mg/L)	HGWC-117	0.0035	0.0016	0.03	No	16	0.01925	18.75	No	0.01	NP (normality)
Mercury (mg/L)	HGWC-117	0.0003	0.00007	0.002	No	12	0.00004938	83.33	No	0.01	NP (NDs)

FIGURE A.

Constituent: Antimony Analysis Run 11/18/2021 2:04 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

Sanitas™ v.9.6.31 . UG Hollow symbols indicate censored values

Constituent: Arsenic Analysis Run 11/18/2021 2:04 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Hammond AP-4

Time Series

Constituent: Antimony Analysis Run 11/18/2021 2:04 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Hammond AP-4

Constituent: Arsenic Analysis Run 11/18/2021 2:04 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Hammond AP-4

Sanitas™ v.9.6.31 . UG Sanitas™ v.9.6.31 . UG

Constituent: Barium Analysis Run 11/18/2021 2:04 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

Constituent: Beryllium Analysis Run 11/18/2021 2:04 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

Time Series

Constituent: Barium Analysis Run 11/18/2021 2:04 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

0.11

Constituent: Beryllium Analysis Run 11/18/2021 2:04 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

Constituent: Boron Analysis Run 11/18/2021 2:04 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

Constituent: Cadmium Analysis Run 11/18/2021 2:04 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Hammond AP-4

Constituent: Boron Analysis Run 11/18/2021 2:04 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

Constituent: Cadmium Analysis Run 11/18/2021 2:04 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Hammond AP-4

Sanitas™ v.9.6.31 . UG Sanitas™ v.9.6.31 . UG

Constituent: Calcium Analysis Run 11/18/2021 2:04 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

Time Series

200

Plant Hammond Client: Southern Company Data: Hammond AP-4

Sanitas™ v.9.6.31 . UG Time Series 30 HGWA-111 (bg) HGWA-112 (bg) 24 HGWA-113 (bg) HGWA-47 (bg) mg/L HGWA-48D (bg) 12 HGWC-101 **HGWC-102** 8/16/21 8/30/16 8/27/17 8/24/18 8/22/19 8/18/20

Constituent: Chloride Analysis Run 11/18/2021 2:04 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

Constituent: Chloride Analysis Run 11/18/2021 2:04 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

Constituent: Chromium Analysis Run 11/18/2021 2:04 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

Sanitas™ v.9.6.31 . UG Hollow symbols indicate censored values.

Constituent: Cobalt Analysis Run 11/18/2021 2:04 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Hammond AP-4

Constituent: Chromium Analysis Run 11/18/2021 2:04 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

Constituent: Cobalt Analysis Run 11/18/2021 2:04 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Hammond AP-4

Constituent: Combined Radium 226 & 228 Analysis Run 11/18/2021 2:05 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

Constituent: Fluoride Analysis Run 11/18/2021 2:05 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

Constituent: Combined Radium 226 & 228 Analysis Run 11/18/2021 2:05 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Hammond AP-4

Constituent: Fluoride Analysis Run 11/18/2021 2:05 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

Constituent: Lead Analysis Run 11/18/2021 2:05 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

Constituent: Lithium Analysis Run 11/18/2021 2:05 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Hammond AP-4

Constituent: Lead Analysis Run 11/18/2021 2:05 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

Constituent: Lithium Analysis Run 11/18/2021 2:05 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Hammond AP-4

Constituent: Mercury Analysis Run 11/18/2021 2:05 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Hammond AP-4

Sanitas™ v.9.6.31 . UG Hollow symbols indicate censored values

Constituent: Molybdenum Analysis Run 11/18/2021 2:05 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

Time Series

Constituent: Mercury Analysis Run 11/18/2021 2:05 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Hammond AP-4

Constituent: Molybdenum Analysis Run 11/18/2021 2:05 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Hammond AP-4

Sanitas™ v.9.6.31. UG Sanitas™ v.9.6.31. UG

Constituent: Selenium Analysis Run 11/18/2021 2:05 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

Constituent: pH Analysis Run 11/18/2021 2:05 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Hammond AP-4

Constituent: Selenium Analysis Run 11/18/2021 2:05 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Hammond AP-4

Constituent: Sulfate Analysis Run 11/18/2021 2:05 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Hammond AP-4

Constituent: Thallium Analysis Run 11/18/2021 2:05 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Hammond AP-4

Constituent: Sulfate Analysis Run 11/18/2021 2:05 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Hammond AP-4

Constituent: Thallium Analysis Run 11/18/2021 2:05 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

Sanitas™ v.9.6.31 . UG

Constituent: Total Dissolved Solids Analysis Run 11/18/2021 2:05 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Hammond AP-4

Time Series

Constituent: Total Dissolved Solids Analysis Run 11/18/2021 2:05 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

Constituent: Antimony (mg/L) Analysis Run 11/18/2021 2:06 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

	HGWA-111 (bg)	HGWA-112 (bg)	HGWA-113 (bg)	HGWA-47 (bg)	HGWA-48D (bg)	HGWC-101	HGWC-102
8/30/2016	<0.003	<0.003	<0.003				
8/31/2016						<0.003	
10/20/2016	<0.003					<0.003	
10/24/2016		<0.003	<0.003				
1/25/2017	<0.003	<0.003	<0.003				
1/31/2017						<0.003	
5/23/2017		<0.003	<0.003			<0.003	
5/24/2017	<0.003						
8/10/2017	<0.003	<0.003	<0.003			<0.003	
11/13/2017	<0.003	<0.003					
11/14/2017			<0.003			<0.003	
6/4/2018	<0.003	<0.003					
6/5/2018			<0.003				
6/6/2018						<0.003	
10/1/2018	<0.003	<0.003	<0.003				
10/3/2018						<0.003	
8/21/2019	<0.003	<0.003	<0.003				
8/22/2019						<0.003	
10/23/2019							<0.003
1/3/2020							0.00076 (J)
3/4/2020							<0.003
3/24/2020							<0.003
6/18/2020							<0.003
7/21/2020							<0.003
8/25/2020	<0.003	<0.003	<0.003				
8/27/2020						<0.003	<0.003
9/18/2020				<0.003	0.00038 (J)		
9/24/2020							<0.003
11/10/2020				<0.003			
11/11/2020					0.00031 (J)		
12/15/2020				<0.003	<0.003		
1/19/2021				<0.003	0.00042 (J)		
8/12/2021	<0.003	<0.003	<0.003	<0.003	<0.003		
8/13/2021							<0.003
8/16/2021						<0.003	

Constituent: Antimony (mg/L) Analysis Run 11/18/2021 2:06 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

<0.003

<0.003

<0.003

HGWC-103 HGWC-105 HGWC-107 HGWC-109 HGWC-117 HGWC-118 HGWC-117A 8/31/2016 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 10/20/2016 <0.003 < 0.003 10/24/2016 < 0.003 10/25/2016 <0.003 < 0.003 < 0.003 1/27/2017 <0.003 1/31/2017 <0.003 <0.003 <0.003 <0.003 < 0.003 5/23/2017 <0.003 <0.003 <0.003 5/24/2017 <0.003 <0.003 <0.003 8/10/2017 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 < 0.003 11/14/2017 6/6/2018 0.0022 (J) <0.003 < 0.003 < 0.003 6/7/2018 < 0.003 < 0.003 0.0011 (J) 10/2/2018 <0.003 < 0.003 10/3/2018 <0.003 < 0.003 <0.003 8/22/2019 <0.003 <0.003 <0.003 < 0.003 <0.003 <0.003 8/23/2019 8/26/2020 < 0.003 8/27/2020 <0.003 <0.003 <0.003 <0.003 <0.003 8/12/2021 <0.003 8/13/2021 <0.003 <0.003 <0.003 <0.003

8/16/2021

8/19/2021

9/27/2021

<0.003

Constituent: Arsenic (mg/L) Analysis Run 11/18/2021 2:06 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

	HGWA-111 (bg)	HGWA-112 (bg)	HGWA-113 (bg)	HGWA-47 (bg)	HGWA-48D (bg)	HGWC-101	HGWC-102
8/30/2016	<0.005	<0.005	<0.005				
8/31/2016						<0.005	
10/20/2016	<0.005					<0.005	
10/24/2016		<0.005	<0.005				
1/25/2017	<0.005	<0.005	<0.005				
1/31/2017						<0.005	
5/23/2017		<0.005	<0.005			<0.005	
5/24/2017	<0.005						
8/10/2017	<0.005	<0.005	<0.005			<0.005	
11/13/2017	<0.005	<0.005					
11/14/2017			<0.005			<0.005	
6/4/2018	<0.005	<0.005					
6/5/2018			<0.005				
6/6/2018						<0.005	
10/1/2018	<0.005	<0.005	<0.005				
10/3/2018						<0.005	
8/21/2019	<0.005	<0.005	<0.005				
8/22/2019						<0.005	
10/21/2019	<0.005						
10/22/2019		<0.005	<0.005				
10/23/2019						<0.005	<0.005
1/3/2020							0.00065 (J)
3/4/2020							0.00036 (J)
3/24/2020	0.00042 (J)	<0.005					<0.005
3/25/2020						0.00039 (J)	
4/9/2020			0.00074 (J)				
6/18/2020							0.00092 (J)
7/21/2020							0.00083 (J)
8/25/2020	<0.005	<0.005	<0.005				
8/27/2020						<0.005	<0.005
9/18/2020	<0.005	<0.005		<0.005	<0.005		
9/22/2020			<0.005				
9/24/2020						<0.005	<0.005
11/10/2020				<0.005			
11/11/2020					<0.005		
12/15/2020				<0.005	<0.005		
1/19/2021				<0.005	<0.005		
3/11/2021	<0.005						
3/12/2021		<0.005		<0.005	0.0018 (J)		
3/16/2021			0.0011 (J)				
3/17/2021						<0.005	<0.005
8/12/2021	<0.005	<0.005	<0.005	<0.005	0.0013 (J)		
8/13/2021							<0.005
8/16/2021						<0.005	

Constituent: Arsenic (mg/L) Analysis Run 11/18/2021 2:06 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

	HGWC-103	HGWC-105	HGWC-107	HGWC-109	HGWC-117	HGWC-118	HGWC-117A
8/31/2016	<0.005	<0.005	<0.005	0.0045 (J)	<0.005	<0.005	
10/20/2016					<0.005	<0.005	
10/24/2016	<0.005						
10/25/2016		<0.005	<0.005	0.003 (J)			
1/27/2017					<0.005		
1/31/2017	<0.005	<0.005	<0.005	0.0022 (J)		<0.005	
5/23/2017	<0.005				<0.005	<0.005	
5/24/2017		<0.005	<0.005	0.0012 (J)			
8/10/2017	<0.005	<0.005	<0.005	0.0016 (J)	<0.005	<0.005	
11/14/2017	<0.005	<0.005	<0.005	0.0011 (J)	<0.005	<0.005	
6/6/2018	<0.005	<0.005	<0.005	0.0018 (J)			
6/7/2018					<0.005	<0.005	
10/2/2018		<0.005	<0.005	0.0014 (J)			
10/3/2018	<0.005				<0.005	<0.005	
8/22/2019	<0.005	<0.005			<0.005	<0.005	
8/23/2019			<0.005	0.0035 (J)			
10/22/2019			<0.005	0.0019 (J)	<0.005	<0.005	
10/23/2019	<0.005	<0.005					
3/24/2020					0.00037 (J)		
3/25/2020	<0.005	<0.005	<0.005	0.0025 (J)		<0.005	
8/26/2020						<0.005	
8/27/2020	<0.005	<0.005	<0.005	0.0011 (J)	<0.005		
9/24/2020	<0.005	<0.005	<0.005				
9/25/2020				0.0017 (J)	<0.005		
9/28/2020						<0.005	
3/17/2021				0.0019 (J)			
3/18/2021	<0.005	<0.005	<0.005			0.001 (J)	
3/19/2021					<0.005		
8/12/2021							<0.005
8/13/2021		<0.005	<0.005	0.0019 (J)		<0.005	
8/16/2021	<0.005						
8/19/2021					<0.005		
9/27/2021					<0.005		<0.005

Constituent: Barium (mg/L) Analysis Run 11/18/2021 2:06 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

			. idiit i idi		anioni company		•
	HGWA-111 (bg)	HGWA-112 (bg)	HGWA-113 (bg)	HGWA-47 (bg)	HGWA-48D (bg)	HGWC-101	HGWC-102
8/30/2016	0.0275	0.0269	0.0269				
8/31/2016						0.0527	
10/20/2016	0.0255					0.0477	
10/24/2016		0.028	0.0258				
1/25/2017	0.0304	0.0252	0.0272				
1/31/2017						0.0527	
5/23/2017		0.0293	0.0293			0.0436	
5/24/2017	0.0256						
8/10/2017	0.0306	0.0274	0.031			0.0419	
11/13/2017	0.0217	0.0275					
11/14/2017			0.0289			0.0407	
6/4/2018	0.025	0.027					
6/5/2018			0.028				
6/6/2018						0.043	
10/1/2018	0.021	0.026	0.025				
10/3/2018						0.041	
8/21/2019	0.029	0.027	0.027				
8/22/2019						0.043	
10/21/2019	0.033						
10/22/2019		0.028	0.027				
10/23/2019						0.043	0.037
1/3/2020							0.036
3/4/2020							0.033
3/24/2020	0.032	0.029					0.024
3/25/2020						0.038	
4/9/2020			0.034				
6/18/2020							0.029
7/21/2020							0.028
8/25/2020	0.031	0.028	0.03				
8/27/2020						0.045	0.028
9/18/2020	0.024	0.025		0.026	0.077		
9/22/2020			0.038				
9/24/2020						0.041	0.029
11/10/2020				0.027			
11/11/2020					0.078		
12/15/2020				0.027	0.091		
1/19/2021				0.029	0.095		
3/11/2021	0.037						
3/12/2021		0.03		0.03	0.1		
3/16/2021			0.054				
3/17/2021						0.04	0.031
8/12/2021	0.029	0.028	0.033	0.028	0.1		
8/13/2021							0.026
8/16/2021						0.037	

Constituent: Barium (mg/L) Analysis Run 11/18/2021 2:06 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

	HGWC-103	HGWC-105	HGWC-107	HGWC-109	HGWC-117	HGWC-118	HGWC-117A
8/31/2016	0.045	0.067	0.0391	0.0883	0.0547	0.0595	
10/20/2016					0.0529	0.055	
10/24/2016	0.0386						
10/25/2016		0.0745	0.041	0.0831			
1/27/2017					0.049		
1/31/2017	0.0365	0.0674	0.0382	0.0844		0.0613	
5/23/2017	0.0254				0.0352	0.068	
5/24/2017		0.0668	0.0377	0.0784			
8/10/2017	0.0396	0.067	0.0385	0.0903	0.0457	0.0638	
11/14/2017	0.0385	0.0643	0.039	0.083	0.0368	0.07	
6/6/2018	0.043	0.068	0.039	0.095			
6/7/2018					0.036	0.059	
10/2/2018		0.066	0.038	0.089			
10/3/2018	0.04				0.047	0.056	
8/22/2019	0.036	0.066			0.036	0.052	
8/23/2019			0.038	0.088			
10/22/2019			0.039	0.087	0.049	0.054	
10/23/2019	0.039	0.066					
3/24/2020					0.051		
3/25/2020	0.036	0.074	0.037	0.084		0.06	
8/26/2020						0.056	
8/27/2020	0.038	0.068	0.034	0.083	0.047		
9/24/2020	0.036	0.075	0.039				
9/25/2020				0.085	0.05		
9/28/2020						0.046	
3/17/2021				0.077			
3/18/2021	0.042	0.082	0.041			0.067	
3/19/2021					0.058		
8/12/2021							0.079
8/13/2021		0.073	0.033	0.08		0.043	
8/16/2021	0.037						
8/19/2021					0.041		
9/27/2021					0.038		0.062

Constituent: Beryllium (mg/L) Analysis Run 11/18/2021 2:06 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

	HGWA-111 (bg)	HGWA-112 (bg)	HGWA-113 (bg)	HGWA-47 (bg)	HGWA-48D (bg)	HGWC-101	HGWC-102
8/30/2016	<0.0005	<0.0005	<0.0005				
8/31/2016						<0.0005	
10/20/2016	<0.0005					<0.0005	
10/24/2016		<0.0005	0.0019 (J)				
1/25/2017	<0.0005	<0.0005	<0.0005				
1/31/2017						<0.0005	
5/23/2017		<0.0005	<0.0005			7E-05 (J)	
5/24/2017	<0.0005						
8/10/2017	<0.0005	<0.0005	<0.0005			<0.0005	
11/13/2017	<0.0005	<0.0005					
11/14/2017			<0.0005			<0.0005	
6/4/2018	<0.0005	<0.0005					
6/5/2018			<0.0005				
6/6/2018						5.9E-05 (J)	
10/1/2018	<0.0005	<0.0005	<0.0005				
10/3/2018						6.5E-05 (J)	
8/21/2019	<0.0005	<0.0005	<0.0005				
8/22/2019						<0.0005	
10/21/2019	<0.0005						
10/22/2019		<0.0005	<0.0005				
10/23/2019						7.5E-05 (J)	<0.0005
1/3/2020							<0.0005
3/4/2020							<0.0005
3/24/2020	<0.0005	<0.0005					<0.0005
3/25/2020						<0.0005	
4/9/2020			<0.0005				
6/18/2020							<0.0005
7/21/2020							<0.0005
8/25/2020	4.7E-05 (J)	<0.0005	4.6E-05 (J)				
8/27/2020						5.7E-05 (J)	<0.0005
9/18/2020	<0.0005	<0.0005		<0.0005	<0.0005	.,	
9/22/2020			9.9E-05 (J)				
9/24/2020						4.8E-05 (J)	<0.0005
11/10/2020				<0.0005		. ,	
11/11/2020					<0.0005		
12/15/2020				<0.0005	<0.0005		
1/19/2021				<0.0005	<0.0005		
3/11/2021	0.00014 (J)						
3/12/2021		5.4E-05 (J)		<0.0005	<0.0005		
3/16/2021		(.)	0.00018 (J)				
3/17/2021			(0)			5.9E-05 (J)	<0.0005
8/12/2021	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	(0)	
8/13/2021	0.000	0.000	0.000	5.5555	0.0000		<0.0005
8/16/2021						<0.0005	0.000
3/10/2021						0.0000	

Constituent: Beryllium (mg/L) Analysis Run 11/18/2021 2:06 PM View: Constituents View

Plant Hammond Client: Southern Company Data: Hammond AP-4

	HGWC-103	HGWC-105	HGWC-107	HGWC-109	HGWC-117	HGWC-118	HGWC-117A
8/31/2016	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	
10/20/2016					<0.0005	<0.0005	
10/24/2016	<0.0005						
10/25/2016		<0.0005	<0.0005	<0.0005			
1/27/2017					<0.0005		
1/31/2017	<0.0005	<0.0005	<0.0005	<0.0005		<0.0005	
5/23/2017	<0.0005				<0.0005	<0.0005	
5/24/2017		<0.0005	<0.0005	<0.0005			
8/10/2017	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	
11/14/2017	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	
6/6/2018	<0.0005	<0.0005	<0.0005	<0.0005			
6/7/2018					6.8E-05 (J)	<0.0005	
10/2/2018		<0.0005	<0.0005	<0.0005			
10/3/2018	<0.0005				<0.0005	<0.0005	
8/22/2019	<0.0005	<0.0005			7.9E-05 (J)	<0.0005	
8/23/2019			<0.0005	<0.0005			
10/22/2019			<0.0005	<0.0005	<0.0005	<0.0005	
10/23/2019	<0.0005	<0.0005					
3/24/2020					<0.0005		
3/25/2020	<0.0005	<0.0005	<0.0005	<0.0005		<0.0005	
8/26/2020						<0.0005	
8/27/2020	5E-05 (J)	<0.0005	<0.0005	<0.0005	4.9E-05 (J)		
9/24/2020	8.8E-05 (J)	<0.0005	<0.0005				
9/25/2020				<0.0005	6.6E-05 (J)		
9/28/2020						<0.0005	
3/17/2021				<0.0005			
3/18/2021	6.1E-05 (J)	<0.0005	<0.0005			9.3E-05 (J)	
3/19/2021					8.1E-05 (J)		
8/12/2021							<0.0005
8/13/2021		<0.0005	<0.0005	<0.0005		<0.0005	
8/16/2021	<0.0005						
8/19/2021					5.6E-05 (J)		
9/27/2021					<0.0005		<0.0005

Constituent: Boron (mg/L) Analysis Run 11/18/2021 2:06 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

	HGWA-111 (bg)	HGWA-112 (bg)	HGWA-113 (bg)	HGWA-47 (bg)	HGWA-48D (bg)	HGWC-101	HGWC-102
8/30/2016	<0.04	<0.04	<0.04				
8/31/2016						0.0724 (J)	
10/20/2016	0.016 (J)					0.0877 (J)	
10/24/2016		0.0367 (J)	0.0226 (J)				
1/25/2017	0.0095 (J)	0.0075 (J)	0.009 (J)				
1/31/2017						0.0928	
5/23/2017		0.0073 (J)	0.0082 (J)			0.0795	
5/24/2017	0.0094 (J)						
8/10/2017	<0.04	<0.04	0.0061 (J)			0.0814	
11/13/2017	0.0103 (J)	0.0089 (J)					
11/14/2017			0.012 (J)			0.108	
6/4/2018	0.0065 (J)	0.007 (J)					
6/5/2018			0.0085 (J)				
6/6/2018						0.081	
10/1/2018	0.0054 (J)	<0.04	0.0042 (J)				
10/3/2018						0.092	
4/1/2019	0.0076 (J)						
4/2/2019		0.0043 (J)	0.0059 (J)				
4/4/2019						0.06 (X)	
10/21/2019	0.0097 (J)						
10/22/2019		0.016 (J)	0.01 (J)				
10/23/2019						0.1	3.1
1/3/2020							3.4
3/4/2020							3.7
3/24/2020	0.011 (J)	0.012 (J)					2.4
3/25/2020						0.08 (J)	
4/9/2020			0.012 (J)				
6/18/2020							2.9
7/21/2020							3
8/27/2020							2.7
9/18/2020	0.011 (J)	0.008 (J)		0.0082 (J)	0.015 (J)		
9/22/2020			0.021 (J)				
9/24/2020						0.1	2.9
11/10/2020				0.0064 (J)			
11/11/2020					0.014 (J)		
12/15/2020				<0.04	0.0083 (J)		
1/19/2021				0.015 (J)	0.015 (J)		
3/11/2021	0.01 (J)						
3/12/2021		0.0061 (J)		0.0067 (J)	0.012 (J)		
3/16/2021			0.011 (J)				
3/17/2021						0.13	2.7
8/12/2021	<0.04	<0.04	<0.04	<0.04	0.012 (J)		
8/13/2021							2.4
8/16/2021						0.13	

Constituent: Boron (mg/L) Analysis Run 11/18/2021 2:06 PM View: Constituents View

Plant Hammond Client: Southern Company Data: Hammond AP-4

	/31/2016	2.22						
10		2.22	1.14	0.651	0.402	0.821	0.681	
	0/20/2016					0.956	0.697	
1/	0/24/2016	1.83						
1/	0/25/2016		1.21	0.778	0.372			
1/	/27/2017					0.99		
1/	/31/2017	2.12	1.43	0.782	0.404		0.768	
5	/23/2017	2.56				0.438	0.754	
5	/24/2017		1.3	0.753	0.415			
8	/10/2017	2.28	1.28	0.702	0.397	0.821	0.608	
1	1/14/2017	2.32	1.29	0.78	0.366	0.536	0.691	
6	6/6/2018	2.5	1.4	0.87	0.48			
6	7/7/2018					0.5	0.57	
1/	0/2/2018		1.2	0.82	0.43			
1/	0/3/2018	2.4				0.85	0.51	
4	/3/2019			0.89	0.4			
4	/4/2019	2.4	1.4 (X)					
4	/5/2019					1 (X)	0.6 (X)	
6	/17/2019	2.3		0.86	0.37			
1/	0/22/2019			0.91	0.32	1	0.65	
10	0/23/2019	2.3	1.3					
3/	/24/2020					1		
3/	/25/2020	2.3	1.4	0.87	0.36		0.7	
9/	/24/2020	2.2	1.2	0.88				
9/	/25/2020				0.28	1.1		
9/	/28/2020						0.65	
3/	/17/2021				0.26			
3/	/18/2021	2.4	1.5	0.92			0.81	
3/	/19/2021					1.5		
8/	/12/2021							0.34
8/	/13/2021		1.2	0.73	0.24		0.59	
8/	/16/2021	3.2						
8/	/19/2021					0.78		
9/	/27/2021					0.67		0.3

Constituent: Cadmium (mg/L) Analysis Run 11/18/2021 2:06 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

	HGWA-111 (bg)	HGWA-112 (bg)	HGWA-113 (bg)	HGWA-47 (bg)	HGWA-48D (bg)	HGWC-101	HGWC-102
8/30/2016	<0.0005	<0.0005	<0.0005				
8/31/2016						0.0002 (J)	
10/20/2016	<0.0005					0.0003 (J)	
10/24/2016		<0.0005	<0.0005				
1/25/2017	<0.0005	<0.0005	<0.0005				
1/31/2017						0.0001 (J)	
5/23/2017		<0.0005	<0.0005			0.0002 (J)	
5/24/2017	<0.0005						
8/10/2017	<0.0005	<0.0005	<0.0005			0.0002 (J)	
11/13/2017	<0.0005	<0.0005					
11/14/2017			<0.0005			<0.0005	
6/4/2018	<0.0005	<0.0005					
6/5/2018			<0.0005				
6/6/2018						9.5E-05 (J)	
10/1/2018	<0.0005	<0.0005	<0.0005				
10/3/2018						0.00018 (J)	
8/21/2019	<0.0005	<0.0005	<0.0005				
8/22/2019						0.00014 (J)	
10/21/2019	<0.0005						
10/22/2019		<0.0005	<0.0005				
10/23/2019						0.0002 (J)	0.00026 (J)
1/3/2020							0.0002 (J)
3/4/2020							0.00026 (J)
3/24/2020	<0.0005	<0.0005					0.00068 (J)
3/25/2020						0.00014 (J)	
4/9/2020			<0.0005				
6/18/2020							0.00047 (J)
7/21/2020							0.00083 (J)
8/25/2020	<0.0005	<0.0005	<0.0005				
8/27/2020						0.00019 (J)	0.00038 (J)
9/18/2020	<0.0005	<0.0005		<0.0005	<0.0005		
9/22/2020			<0.0005				
9/24/2020						0.00014 (J)	0.00032 (J)
11/10/2020				<0.0005			
11/11/2020					<0.0005		
12/15/2020				<0.0005	<0.0005		
1/19/2021				<0.0005	<0.0005		
3/11/2021	<0.0005						
3/12/2021		<0.0005		<0.0005	<0.0005		
3/16/2021			<0.0005				
3/17/2021						<0.0005	0.00094
8/12/2021	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005		
8/13/2021							0.00069
8/16/2021						0.00015 (J)	-
						(-)	

Constituent: Cadmium (mg/L) Analysis Run 11/18/2021 2:06 PM View: Constituents View

Plant Hammond Client: Southern Company Data: Hammond AP-4

	HGWC-103	HGWC-105	HGWC-107	HGWC-109	HGWC-117	HGWC-118	HGWC-117A
8/31/2016	0.0006 (J)	<0.0005	0.0001 (J)	<0.0005	0.0008 (J)	<0.0005	
10/20/2016					0.0008 (J)	<0.0005	
10/24/2016	0.0008 (J)						
10/25/2016		<0.0005	8E-05 (J)	<0.0005			
1/27/2017					0.0007 (J)		
1/31/2017	0.0006 (J)	<0.0005	9E-05 (J)	<0.0005		<0.0005	
5/23/2017	0.0006 (J)				0.0005 (J)	<0.0005	
5/24/2017		<0.0005	0.0001 (J)	<0.0005			
8/10/2017	0.0007 (J)	<0.0005	<0.0005	<0.0005	0.0004 (J)	<0.0005	
11/14/2017	0.0007 (J)	<0.0005	<0.0005	<0.0005	0.0005 (J)	<0.0005	
6/6/2018	0.00073 (J)	<0.0005	0.00012 (J)	<0.0005			
6/7/2018					0.00049 (J)	<0.0005	
10/2/2018		<0.0005	0.0001 (J)	<0.0005			
10/3/2018	0.00078 (J)				0.00079 (J)	<0.0005	
8/22/2019	0.0008 (J)	<0.0005			0.00064 (J)	<0.0005	
8/23/2019			0.00011 (J)	<0.0005			
10/22/2019			<0.0005	<0.0005	0.00068 (J)	<0.0005	
10/23/2019	0.00091 (J)	<0.0005					
3/24/2020					0.00079 (J)		
3/25/2020	0.00068 (J)	<0.0005	<0.0005	<0.0005		<0.0005	
8/26/2020						<0.0005	
8/27/2020	0.00082 (J)	<0.0005	<0.0005	<0.0005	0.0008 (J)		
9/24/2020	0.00076 (J)	<0.0005	<0.0005				
9/25/2020				<0.0005	0.00089 (J)		
9/28/2020						<0.0005	
3/17/2021				<0.0005			
3/18/2021	0.00068	<0.0005	<0.0005			<0.0005	
3/19/2021					0.001		
8/12/2021							0.00016 (J)
8/13/2021		<0.0005	<0.0005	<0.0005		<0.0005	
8/16/2021	0.00081						
8/19/2021					0.0012		
9/27/2021					0.00098		<0.0005

Constituent: Calcium (mg/L) Analysis Run 11/18/2021 2:06 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

	HGWA-111 (bg)	HGWA-112 (bg)	HGWA-113 (bg)	HGWA-47 (bg)	HGWA-48D (bg)	HGWC-101	HGWC-102
8/30/2016	40.3	6.69	6.72				
8/31/2016						19.4	
10/20/2016	38.7					19.3	
10/24/2016		6.25	6.4				
1/25/2017	44.6	6.58	6.87				
1/31/2017						19.1	
5/23/2017		6.4	7.13			18.3	
5/24/2017	34.8						
8/10/2017	48.6	6.54	6.71			20.9	
11/13/2017	17.1	6.26					
11/14/2017			7.4			21.7	
6/4/2018	30.1	7.4					
6/5/2018			7.4				
6/6/2018						17	
10/1/2018	14.2 (J)	5.8	6.2				
10/3/2018						19.1 (J)	
4/1/2019	58.4						
4/2/2019		6.7	7.4				
4/4/2019						16.9	
10/21/2019	51						
10/22/2019		6.3	7.2				
10/23/2019						21.9	136
1/3/2020							118
3/4/2020							144
3/24/2020	61.2	7					103
3/25/2020						18.4	
4/9/2020			8.3				
6/18/2020							124
7/21/2020							120
8/27/2020							106
9/18/2020	32.2	6.5		62.2	51.8		
9/22/2020			7.9				
9/24/2020						20.3	120
11/10/2020				73.3			
11/11/2020					61.3		
12/15/2020				72.5	61.3		
1/19/2021				72.5	58.9		
3/11/2021	53.2						
3/12/2021		6.9		69.2	57.5		
3/16/2021			8.6				
3/17/2021						21.8	111
8/12/2021	45.4	6.9	8.4	71.2	59.5		
8/13/2021							119
8/16/2021						22.8	

Constituent: Calcium (mg/L) Analysis Run 11/18/2021 2:06 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

	HGWC-103	HGWC-105	HGWC-107	HGWC-109	HGWC-117	HGWC-118	HGWC-117A
8/31/2016	70.4	74.2	44.7	35.1	63.4	79.3	
10/20/2016					64.4	83.7	
10/24/2016	70.9						
10/25/2016		72.5	49	35.4			
1/27/2017					68.6		
1/31/2017	63.6	70.3	46.6	34.2		76.8	
5/23/2017	111				32	77.2	
5/24/2017		75.9	49.5	35.3			
8/10/2017	81.2	84	54.2	43.1	78.9	83.1	
11/14/2017	79.7	87.2	53.2	37.4	46.9	86.7	
6/6/2018	88.3	81	55	41.1			
6/7/2018					37.7	79.7	
10/2/2018		84.7	55.4	42.5			
10/3/2018	85.3				68	77.1	
4/3/2019			54	37.5			
4/4/2019	91.9	73.8					
4/5/2019					70	82	
6/17/2019	92.6	81.2	55.3				
6/18/2019					36.3	76.5	
10/22/2019			58.1	42.6	70.9	84.2	
10/23/2019	86.5	89.4					
3/24/2020					68		
3/25/2020	86.8	91.4	59.5	42.6		86.8	
9/24/2020	91.3	92.9	55.4				
9/25/2020				48.5	72.8		
9/28/2020						88.9	
3/17/2021				37.3			
3/18/2021	83.7	97.7	56			85.4	
3/19/2021					87.3		
8/12/2021							50.7
8/13/2021		102	57.8	43.5		84.3	
8/16/2021	124						
8/19/2021					40.9		
9/27/2021					37.5		47.2

Constituent: Chloride (mg/L) Analysis Run 11/18/2021 2:06 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

			· idiii id		outilities outilities of	244	•
	HGWA-111 (bg)	HGWA-112 (bg)	HGWA-113 (bg)	HGWA-47 (bg)	HGWA-48D (bg)	HGWC-101	HGWC-102
8/30/2016	3.3	5.4	2				
8/31/2016						5.7	
10/20/2016	3.2					5.7	
10/24/2016		5.2	1.9				
1/25/2017	2.7	5	1.9				
1/31/2017						5.8	
5/23/2017		5.1	1.6			5.3	
5/24/2017	3						
8/10/2017	2.8	5.2	1.7			5.4	
11/13/2017	2.5	5.5					
11/14/2017			2			5.8	
6/4/2018	2.6	5.3					
6/5/2018			1.7				
6/6/2018						5.3	
10/1/2018	2.2	5.6	1.6				
10/3/2018						5.8	
4/1/2019	4						
4/2/2019		5.7	1.8				
4/4/2019						5.9	
10/21/2019	3.9						
10/22/2019		5.5	1.9				
10/23/2019						5.5	7.9
1/3/2020							7
3/4/2020							7.1
3/24/2020	3.6	5.2					6.5
3/25/2020						5.2	
4/9/2020			1.4				
6/18/2020							6.9
7/21/2020							7.2
8/27/2020							7.1
9/18/2020	2.6	5.2		2.7	2.6		
9/22/2020			1.5				
9/24/2020						5.5	7.2
11/10/2020				2.7			
11/11/2020					2.6		
12/15/2020				2.9	2.7		
1/19/2021				2.8	2.7		
3/11/2021	3.4						
3/12/2021		5.3		2.7	2.6		
3/16/2021			1.6				
3/17/2021						5.5	6.9
8/12/2021	2.5	4.4	1.5	2.3	2.2		
8/13/2021							6
8/16/2021						5.4	

Constituent: Chloride (mg/L) Analysis Run 11/18/2021 2:06 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

	HGWC-103	HGWC-105	HGWC-107	HGWC-109	HGWC-117	HGWC-118	HGWC-117A
8/31/2016	5.2	3	3.2	5	7.1	4.5	
10/20/2016					7.7	4.4	
10/24/2016	5.2						
10/25/2016		2.8	3.2	4.8			
1/27/2017					7.8		
1/31/2017	5.6	3.3	3.1	5.5		4.8	
5/23/2017	5.7				3.6	4.3	
5/24/2017		3.5	2.9	5.3			
8/10/2017	5.8	2.9	2.8	4.6	5.9	4.2	
11/14/2017	6	4	3.4	5.6	4	4.4	
6/6/2018	6.4	2.9	2.8	5.3			
6/7/2018					3.6	4.1	
10/2/2018		3.5	3.2	5.3			
10/3/2018	6.3				7.6	4.4	
4/3/2019			3.6	5			
4/4/2019	6.9	3.9					
4/5/2019					8.9	4.3	
6/17/2019	5.2		2.9				
10/22/2019			3.6	4.6	12.1	4.5	
10/23/2019	6.1	3.6					
3/24/2020					12.5		
3/25/2020	5.1	3.2	3	3.9		3.6	
9/24/2020	6	3.9	3.5				
9/25/2020				4.1	16.1		
9/28/2020						4	
3/17/2021				4.7			
3/18/2021	6.2	4.3	3.2			4.3	
3/19/2021					24.9		
8/12/2021							6.3
8/13/2021		3.7	3.1	4		4	
8/16/2021	10.4						
8/19/2021					4		
9/27/2021					3.4		4.5

Constituent: Chromium (mg/L) Analysis Run 11/18/2021 2:06 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

	HGWA-111 (bg)	HGWA-112 (bg)	HGWA-113 (bg)	HGWA-47 (bg)	HGWA-48D (bg)	HGWC-101	HGWC-102
8/30/2016	<0.005	0.0038 (J)	<0.005				
8/31/2016						<0.005	
10/20/2016	<0.005					<0.005	
10/24/2016		0.0039 (J)	0.001 (J)				
1/25/2017	0.0029 (J)	0.0038 (J)	0.0012 (J)				
1/31/2017						<0.005	
5/23/2017		0.0038 (J)	0.0012 (J)			0.0006 (J)	
5/24/2017	0.0004 (J)						
8/10/2017	<0.005	0.0039 (J)	0.0019 (J)			<0.005	
11/13/2017	<0.005	0.0038 (J)					
11/14/2017			0.0016 (J)			<0.005	
6/4/2018	<0.005	0.0037 (J)					
6/5/2018			<0.005				
6/6/2018						<0.005	
10/1/2018	<0.005	0.0036 (J)	0.0023 (J)				
10/3/2018						<0.005	
8/21/2019	0.00061 (J)	0.0039 (J)	0.0022 (J)				
8/22/2019						0.00064 (J)	
10/21/2019	0.0012 (J)						
10/22/2019		0.004 (J)	0.0023 (J)				
10/23/2019						<0.005	<0.005
1/3/2020							0.00063 (J)
3/4/2020							<0.005
3/24/2020	0.0019 (J)	0.0044 (J)					0.00051 (J)
3/25/2020						0.00098 (J)	
4/9/2020			0.0031 (J)				
6/18/2020							<0.005
7/21/2020							<0.005
8/25/2020	0.0013 (J)	0.0039 (J)	0.0031 (J)				
8/27/2020						<0.005	<0.005
9/18/2020	0.00077 (J)	0.0037 (J)		0.0039 (J)	<0.005		
9/22/2020			0.0046 (J)				
9/24/2020			. ,			<0.005	<0.005
11/10/2020				<0.005			
11/11/2020					<0.005		
12/15/2020				<0.005	0.0013 (J)		
1/19/2021				<0.005	0.0015 (J)		
3/11/2021	0.002 (J)				(,,		
3/12/2021	(-,	0.0045 (J)		<0.005	0.00062 (J)		
3/16/2021		(-)	0.0061		(-)		
3/17/2021						0.00075 (J)	<0.005
8/12/2021	<0.005	0.0041 (J)	<0.005	<0.005	<0.005	2.30070 (0)	2.000
8/13/2021		(0)					<0.005
8/16/2021						<0.005	2.000
J. 10/2021						-0.000	

Constituent: Chromium (mg/L) Analysis Run 11/18/2021 2:06 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

	HGWC-103	HGWC-105	HGWC-107	HGWC-109	HGWC-117	HGWC-118	HGWC-117A
8/31/2016	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	
10/20/2016					<0.005	<0.005	
10/24/2016	<0.005						
10/25/2016		<0.005	<0.005	<0.005			
1/27/2017					<0.005		
1/31/2017	<0.005	<0.005	<0.005	<0.005		<0.005	
5/23/2017	<0.005				<0.005	<0.005	
5/24/2017		<0.005	<0.005	<0.005			
8/10/2017	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	
11/14/2017	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	
6/6/2018	<0.005	<0.005	<0.005	<0.005			
6/7/2018					<0.005	<0.005	
10/2/2018		<0.005	<0.005	<0.005			
10/3/2018	<0.005				<0.005	<0.005	
8/22/2019	0.00063 (J)	<0.005			<0.005	<0.005	
8/23/2019			<0.005	<0.005			
10/22/2019			<0.005	0.00062 (J)	<0.005	0.00066 (J)	
10/23/2019	0.0015 (J)	0.0004 (J)					
3/24/2020					0.0012 (J)		
3/25/2020	0.00045 (J)	0.0013 (J)	0.00074 (J)	0.0014 (J)		0.00081 (J)	
8/26/2020						0.00098 (J)	
8/27/2020	0.00069 (J)	<0.005	<0.005	<0.005	0.00057 (J)		
9/24/2020	0.00081 (J)	0.00064 (J)	<0.005				
9/25/2020				<0.005	0.00067 (J)		
9/28/2020						0.0017 (J)	
3/17/2021				<0.005			
3/18/2021	0.003 (J)	0.00058 (J)	<0.005			0.0021 (J)	
3/19/2021					0.001 (J)		
8/12/2021							<0.005
8/13/2021		<0.005	<0.005	<0.005		<0.005	
8/16/2021	<0.005						
8/19/2021					<0.005		
9/27/2021					<0.005		<0.005

Constituent: Cobalt (mg/L) Analysis Run 11/18/2021 2:06 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

			· idiit i idi		amom company	Jata: Hammona / II	•
	HGWA-111 (bg)	HGWA-112 (bg)	HGWA-113 (bg)	HGWA-47 (bg)	HGWA-48D (bg)	HGWC-101	HGWC-102
8/30/2016	<0.005	<0.005	0.0006 (J)				
8/31/2016						0.0033 (J)	
10/20/2016	<0.005					0.0025 (J)	
10/24/2016		<0.005	<0.005				
1/25/2017	<0.005	<0.005	<0.005				
1/31/2017						0.001 (J)	
5/23/2017		<0.005	<0.005			0.0025 (J)	
5/24/2017	<0.005						
8/10/2017	<0.005	<0.005	0.0004 (J)			0.0029 (J)	
11/13/2017	<0.005	<0.005					
11/14/2017			0.0003 (J)			0.003 (J)	
6/4/2018	<0.005	<0.005					
6/5/2018			<0.005				
6/6/2018						0.0016 (J)	
10/1/2018	<0.005	<0.005	<0.005				
10/3/2018						0.0028 (J)	
8/21/2019	<0.005	<0.005	<0.005				
8/22/2019						<0.005	
10/21/2019	<0.005						
10/22/2019		<0.005	<0.005				
10/23/2019						0.0023 (J)	0.0018 (J)
1/3/2020							0.0038 (J)
3/4/2020							0.0021 (J)
3/24/2020	<0.005	<0.005					0.0019 (J)
3/25/2020						0.0021 (J)	
4/9/2020			0.00037 (J)				
6/18/2020							0.0012 (J)
7/21/2020							0.00098 (J)
8/25/2020	<0.005	<0.005	<0.005				
8/27/2020						0.0027 (J)	0.001 (J)
9/18/2020	<0.005	<0.005		0.00049 (J)	<0.005		
9/22/2020			0.00074 (J)				
9/24/2020						0.0021 (J)	0.0011 (J)
11/10/2020				<0.005			
11/11/2020					<0.005		
12/15/2020				<0.005	0.00039 (J)		
1/19/2021				<0.005	<0.005		
3/11/2021	<0.005						
3/12/2021		<0.005		<0.005	<0.005		
3/16/2021			0.0013 (J)				
3/17/2021						0.0023 (J)	0.0012 (J)
8/12/2021	<0.005	<0.005	<0.005	<0.005	<0.005		
8/13/2021							0.00085 (J)
8/16/2021						0.0026 (J)	
						\-/	

Constituent: Cobalt (mg/L) Analysis Run 11/18/2021 2:06 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

	HGWC-103	HGWC-105	HGWC-107	HGWC-109	HGWC-117	HGWC-118	HGWC-117A
8/31/2016	0.0018 (J)	0.0014 (J)	<0.005	0.0023 (J)	0.0035 (J)	<0.005	
10/20/2016					0.0045 (J)	<0.005	
10/24/2016	0.0018 (J)						
10/25/2016		0.0013 (J)	<0.005	0.0017 (J)			
1/27/2017					0.0041 (J)		
1/31/2017	0.0016 (J)	0.0006 (J)	<0.005	0.0017 (J)		<0.005	
5/23/2017	0.0014 (J)				0.0071 (J)	0.0005 (J)	
5/24/2017		0.0007 (J)	<0.005	0.002 (J)			
8/10/2017	0.0025 (J)	0.0006 (J)	<0.005	0.0012 (J)	0.0031 (J)	0.0003 (J)	
11/14/2017	0.002 (J)	0.0005 (J)	<0.005	0.0014 (J)	0.0062 (J)	0.0004 (J)	
6/6/2018	0.0031 (J)	0.00056 (J)	<0.005	0.0014 (J)			
6/7/2018					0.0083 (J)	<0.005	
10/2/2018		<0.005	<0.005	0.00081 (J)			
10/3/2018	0.0023 (J)				0.005 (J)	<0.005	
8/22/2019	0.0019 (J)	<0.005			0.012	0.0003 (J)	
8/23/2019			<0.005	0.0027 (J)			
10/22/2019			<0.005	0.0022 (J)	0.0064	0.00061 (J)	
10/23/2019	0.0021 (J)	0.00038 (J)					
3/24/2020					0.0087		
3/25/2020	0.0022 (J)	0.00047 (J)	<0.005	0.0022 (J)		<0.005	
8/26/2020						0.00061 (J)	
8/27/2020	0.0019 (J)	<0.005	<0.005	0.00086 (J)	0.011		
9/24/2020	0.0019 (J)	0.00044 (J)	<0.005				
9/25/2020				0.001 (J)	0.011		
9/28/2020						0.00048 (J)	
3/17/2021				0.003 (J)			
3/18/2021	0.0021 (J)	0.00045 (J)	<0.005			0.0012 (J)	
3/19/2021					0.011		
8/12/2021							0.0024 (J)
8/13/2021		<0.005	<0.005	0.0011 (J)		<0.005	
8/16/2021	0.0022 (J)						
8/19/2021					0.017		
9/27/2021					0.015		0.0011 (J)

Constituent: Combined Radium 226 & 228 (pCi/L) Analysis Run 11/18/2021 2:06 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

	HGWA-111 (bg)	HGWA-112 (bg)	HGWA-113 (bg)	HGWA-47 (bg)	HGWA-48D (bg)	HGWC-101	HGWC-102
8/30/2016	0.804 (U)	1.32 (U)	0.587 (U)				
8/31/2016						0.621 (U)	
10/20/2016	1.13 (U)					1.4	
10/24/2016		1.3 (U)	0.979 (U)				
1/25/2017	0.888 (U)	1.04 (U)	0.038 (U)				
1/31/2017						0.906 (U)	
5/23/2017		0.541 (U)	0.898 (U)			0.388 (U)	
5/24/2017	0.622 (U)						
8/10/2017	0.745 (U)	0.536 (U)	0.759 (U)			1.03 (U)	
11/13/2017	0.778 (U)	0.786 (U)					
11/14/2017			0.0762 (U)			0.769 (U)	
6/4/2018	0.637 (U)	0.233 (U)					
6/5/2018			0.594 (U)				
6/6/2018						1.28 (U)	
10/1/2018	0.451 (U)	0.494 (U)	0.982				
10/3/2018						0.302 (U)	
8/21/2019	0.553 (U)	0.514 (U)	0.492 (U)			, ,	
8/22/2019						0.474 (U)	
10/21/2019	0.351 (U)						
10/22/2019	, ,	0.828 (U)	0.523 (U)				
10/23/2019						0.776 (U)	0.858 (U)
1/22/2020							1.04 (U)
3/4/2020							1.32
3/24/2020	0.26 (U)	0.677 (U)					1.23 (U)
3/25/2020	. ,	. ,				0.603 (U)	• •
4/9/2020			0.617 (U)				
7/21/2020			. ,				0.0938 (U)
8/25/2020	0.57 (U)	0.0182 (U)	0.587 (U)				
8/27/2020	. ,	. ,	. ,			0.109 (U)	1.17 (U)
9/18/2020	0.828 (U)	1.15 (U)		1.11 (U)	1.5 (U)	,	,
9/22/2020	. ,	, ,	0.551 (U)	,	. ,		
9/24/2020			. ,			0.625 (U)	1.42
11/10/2020				0.234 (U)		. ,	
11/11/2020				. ,	0.776 (U)		
12/15/2020				0.529 (U)	1.23 (U)		
1/19/2021				0.176 (U)	1.35 (U)		
3/11/2021	0.354 (U)			\-,'	. /		
3/12/2021	- (-/	0.164 (U)		0 (U)	0.829 (U)		
3/16/2021		,	0.559 (U)	` '	\-/		
3/17/2021						0.248 (U)	0.401 (U)
8/12/2021	0.532 (U)	0.223 (U)	0.312 (U)	0.462 (U)	0.274 (U)	- \-/	
8/13/2021	(-)	(-)	(-)	(-)	(-,		0.828 (U)
8/16/2021						0.667 (U)	· ·

Constituent: Combined Radium 226 & 228 (pCi/L) Analysis Run 11/18/2021 2:06 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

	HGWC-103	HGWC-105	HGWC-107	HGWC-109	HGWC-117	HGWC-118	HGWC-117A
8/31/2016	1.62	0.906 (U)	1.2	1.03	1.12		
10/20/2016					0.803 (U)	1.97	
10/24/2016	1.01 (U)						
10/25/2016		1.03	1.11 (U)	1.07			
1/27/2017					1.08 (U)		
1/31/2017	0.976 (U)	0.868 (U)	1.45	0.588 (U)		1.03	
5/23/2017	0.891 (U)				0.624 (U)	0.398 (U)	
5/24/2017		0.728 (U)	0.393 (U)	0.593 (U)			
8/10/2017	0.601 (U)	1.35	0.84 (U)	0.691 (U)	0.695 (U)	0.938 (U)	
11/14/2017	0.567 (U)	0.817 (U)	1.01 (U)	0.653 (U)	0.99 (U)	0.335 (U)	
6/6/2018	0.836 (U)	0.559 (U)	0.365 (U)	0.939 (U)			
6/7/2018					1.04 (U)	0.696 (U)	
10/2/2018		0.336 (U)	1.23	0.225 (U)			
10/3/2018	0.111 (U)				0.198 (U)	1.6 (U)	
8/22/2019	0.946 (U)	0.694 (U)			0.333 (U)	0.904 (U)	
8/23/2019			1.69	0.47 (U)			
10/22/2019			0.705 (U)	0.545 (U)	0.827 (U)	0.424 (U)	
10/23/2019	0.571 (U)	0.584 (U)					
3/24/2020					0.815 (U)		
3/25/2020	0.403 (U)	0.663 (U)	0.673 (U)	0.508 (U)		0.915 (U)	
8/26/2020						1.19	
8/27/2020	0.37 (U)	0.416 (U)	0.264 (U)	0.989 (U)	0.193 (U)		
9/24/2020	0.804 (U)	1.11 (U)	0.576 (U)				
9/25/2020				0.584 (U)	0.155 (U)		
9/28/2020						0.613 (U)	
3/17/2021				0.556 (U)			
3/18/2021	0.274 (U)	0.252 (U)	0.145 (U)			0.323 (U)	
3/19/2021					0.303 (U)		
8/12/2021							0.124 (U)
8/13/2021		0.513 (U)	0.815 (U)	0.794 (U)		0.228 (U)	
8/16/2021	0.493 (U)						
8/19/2021					0.155 (U)		
9/27/2021					0.905		1.05 (U)

Constituent: Fluoride (mg/L) Analysis Run 11/18/2021 2:06 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

			T Idilit i Id	minoria Gilent. Ot	outhorn Company	Data: Hallilliona / ti	7
	HGWA-111 (bg)	HGWA-112 (bg)	HGWA-113 (bg)	HGWA-47 (bg)	HGWA-48D (bg)	HGWC-101	HGWC-102
8/30/2016	0.07 (J)	0.04 (J)	0.2 (J)				
8/31/2016						0.05 (J)	
10/20/2016	0.07 (J)					0.03 (J)	
10/24/2016		0.05 (J)	0.16 (J)				
1/25/2017	0.14 (J)	<0.1	0.15 (J)				
1/31/2017						<0.1	
5/23/2017		0.004 (J)	0.18 (J)			<0.1	
5/24/2017	0.02 (J)						
8/10/2017	0.06 (J)	0.03 (J)	0.19 (J)			<0.1	
11/13/2017	<0.1	<0.1					
11/14/2017			0.16 (J)			<0.1	
6/4/2018	0.032 (J)	<0.1					
6/5/2018			0.18 (J)				
6/6/2018						<0.1	
10/1/2018	<0.1	<0.1	0.078 (J)				
10/3/2018						<0.1	
4/1/2019	0.042 (J)						
4/2/2019		<0.1	0.18 (J)				
4/4/2019						<0.1	
8/21/2019	0.048 (J)	<0.1	0.11 (J)				
8/22/2019						<0.1	
10/21/2019	0.12 (J)						
10/22/2019		0.05 (J)	0.18 (J)				
10/23/2019						<0.1	0.22 (J)
1/3/2020							<0.1
3/4/2020							<0.1
3/24/2020	0.076 (J)	<0.1					<0.1
3/25/2020						<0.1	
4/9/2020			0.14 (J)				
6/18/2020							<0.1
7/21/2020							<0.1
8/25/2020	0.052 (J)	<0.1	0.17				
8/27/2020						<0.1	<0.1
9/18/2020	<0.1	<0.1		0.067 (J)	0.098 (J)		
9/22/2020			0.16				
9/24/2020						<0.1	<0.1
11/10/2020				0.065 (J)			
11/11/2020					0.083 (J)		
12/15/2020				0.064 (J)	0.081 (J)		
1/19/2021				0.057 (J)	0.079 (J)		
3/11/2021	0.057 (J)						
3/12/2021		<0.1		0.062 (J)	0.085 (J)		
3/16/2021			0.18				
3/17/2021	.0.4	.0.4	0.40	0.4	0.004 ("	<0.1	<0.1
8/12/2021	<0.1	<0.1	0.16	<0.1	0.064 (J)		
8/13/2021						-0.1	<0.1
8/16/2021						<0.1	

Constituent: Fluoride (mg/L) Analysis Run 11/18/2021 2:06 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

	HGWC-103	HGWC-105	HGWC-107	HGWC-109	HGWC-117	HGWC-118	HGWC-117A
8/31/2016	0.06 (J)	0.15 (J)	0.08 (J)	0.12 (J)	0.09 (J)	0.18 (J)	
10/20/2016					0.11 (J)	0.12 (J)	
10/24/2016	0.13 (J)						
10/25/2016		0.09 (J)	0.16 (J)	0.17 (J)			
1/27/2017					0.28 (J)		
1/31/2017	<0.1	0.13 (J)	0.16 (J)	0.05 (J)		0.3	
5/23/2017	0.15 (J)				0.01 (J)	0.14 (J)	
5/24/2017		0.07 (J)	0.009 (J)	0.13 (J)			
8/10/2017	<0.1	0.03 (J)	<0.1	0.12 (J)	0.1 (J)	0.11 (J)	
11/14/2017	<0.1	<0.1	<0.1	<0.1	<0.1	0.07 (J)	
6/6/2018	<0.1	0.074 (J)	0.057 (J)	0.15 (J)			
6/7/2018					<0.1	0.3	
10/2/2018		<0.1	<0.1	<0.1			
10/3/2018	<0.1				<0.1	0.12 (J)	
4/3/2019			<0.1	0.05 (J)			
4/4/2019	0.042 (J)	0.03 (J)					
4/5/2019					0.19 (J)	0.33	
6/18/2019						0.89	
8/22/2019	<0.1	<0.1			<0.1	0.07 (J)	
8/23/2019			<0.1	0.034 (J)			
10/22/2019			0.047 (J)	0.099 (J)	0.042 (J)	0.087 (J)	
10/23/2019	<0.1	<0.1					
3/24/2020					<0.1		
3/25/2020	<0.1	<0.1	<0.1	0.075 (J)		0.078 (J)	
8/26/2020						0.072 (J)	
8/27/2020	<0.1	<0.1	<0.1	0.094 (J)	<0.1		
9/24/2020	<0.1	<0.1	0.064 (J)				
9/25/2020				0.091 (J)	<0.1		
9/28/2020						0.078 (J)	
3/17/2021				0.089 (J)			
3/18/2021	<0.1	<0.1	<0.1			0.079 (J)	
3/19/2021					<0.1		
8/12/2021							<0.1
8/13/2021		<0.1	<0.1	0.086 (J)		0.075 (J)	
8/16/2021	<0.1						
8/19/2021					<0.1		
9/27/2021					<0.1		<0.1

Constituent: Lead (mg/L) Analysis Run 11/18/2021 2:06 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

	HGWA-111 (bg)	HGWA-112 (bg)	HGWA-113 (bg)	HGWA-47 (bg)	HGWA-48D (bg)	HGWC-101	HGWC-102
8/30/2016	0.0001 (J)	<0.001	<0.001				
8/31/2016						<0.001	
10/20/2016	<0.001					<0.001	
10/24/2016		<0.001	<0.001				
1/25/2017	<0.001	<0.001	<0.001				
1/31/2017						<0.001	
5/23/2017		<0.001	<0.001			0.0009 (J)	
5/24/2017	<0.001						
8/10/2017	<0.001	<0.001	0.0001 (J)			<0.001	
11/13/2017	<0.001	<0.001					
11/14/2017			<0.001			<0.001	
6/4/2018	<0.001	<0.001					
6/5/2018			<0.001				
6/6/2018						<0.001	
10/1/2018	<0.001	<0.001	<0.001				
10/3/2018						<0.001	
8/21/2019	<0.001	<0.001	7.1E-05 (J)				
8/22/2019						<0.001	
10/21/2019	0.00016 (J)						
10/22/2019		<0.001	7.3E-05 (J)				
10/23/2019						<0.001	<0.001
1/3/2020							<0.001
3/4/2020							0.00011 (J)
3/24/2020	0.00058 (J)	0.00016 (J)					<0.001
3/25/2020						<0.001	
4/9/2020			0.00039 (J)				
6/18/2020							<0.001
7/21/2020							<0.001
8/25/2020	0.00036 (J)	0.00011 (J)	0.00022 (J)				
8/27/2020						<0.001	<0.001
9/18/2020	0.00026 (J)	6.5E-05 (J)		<0.001	<0.001		
9/22/2020			0.00096 (J)				
9/24/2020						<0.001	<0.001
11/10/2020				<0.001			
11/11/2020					<0.001		
12/15/2020				<0.001	0.00015 (J)		
1/19/2021				3.8E-05 (J)	5.6E-05 (J)		
3/11/2021	0.0011						
3/12/2021		0.00017 (J)		<0.001	4.8E-05 (J)		
3/16/2021			0.0016				
3/17/2021						<0.001	<0.001
8/12/2021	<0.001	<0.001	<0.001	<0.001	<0.001		
8/13/2021							<0.001
8/16/2021						<0.001	

Constituent: Lead (mg/L) Analysis Run 11/18/2021 2:06 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

<0.001

<0.001

			Fiantiian	illiona Cilent. 30a	unern Company L	dia. Hammonu Ar	
	HGWC-103	HGWC-105	HGWC-107	HGWC-109	HGWC-117	HGWC-118	HGWC-117A
8/31/2016	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	
10/20/2016					<0.001	<0.001	
10/24/2016	<0.001						
10/25/2016		<0.001	<0.001	<0.001			
1/27/2017					<0.001		
1/31/2017	<0.001	<0.001	<0.001	<0.001		<0.001	
5/23/2017	<0.001				<0.001	<0.001	
5/24/2017		<0.001	<0.001	<0.001			
8/10/2017	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	
11/14/2017	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	
6/6/2018	<0.001	<0.001	<0.001	<0.001			
6/7/2018					<0.001	<0.001	
10/2/2018		<0.001	<0.001	<0.001			
10/3/2018	<0.001				<0.001	<0.001	
8/22/2019	<0.001	<0.001			<0.001	<0.001	
8/23/2019			<0.001	5.8E-05 (J)			
10/22/2019			7.9E-05 (J)	5.4E-05 (J)	0.00016 (J)	0.00025 (J)	
10/23/2019	0.00043 (J)	6.8E-05 (J)					
3/24/2020					0.00025 (J)		
3/25/2020	7.6E-05 (J)	8.5E-05 (J)	0.00021 (J)	<0.001		0.0001 (J)	
8/26/2020						0.00036 (J)	
8/27/2020	0.00018 (J)	<0.001	<0.001	<0.001	0.00014 (J)		
9/24/2020	0.00028 (J)	4.9E-05 (J)	0.00034 (J)				
9/25/2020				<0.001	0.00019 (J)		
9/28/2020						0.00022 (J)	
3/17/2021				<0.001			
3/18/2021	0.00024 (J)	5.8E-05 (J)	9.1E-05 (J)			0.00088 (J)	
3/19/2021					0.00038 (J)		
8/12/2021							<0.001
8/13/2021		<0.001	<0.001	<0.001		<0.001	
8/16/2021	<0.001						
8/19/2021					<0.001		

9/27/2021

Constituent: Lithium (mg/L) Analysis Run 11/18/2021 2:06 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

	HGWA-111 (bg)	HGWA-112 (bg)	HGWA-113 (bg)	HGWA-47 (bg)	HGWA-48D (bg)	HGWC-101	HGWC-102
8/30/2016	0.0022 (J)	<0.03	<0.03				
8/31/2016						<0.03	
10/20/2016	<0.03					<0.03	
10/24/2016		<0.03	<0.03				
1/25/2017	<0.03	<0.03	<0.03				
1/31/2017						<0.03	
5/23/2017		<0.03	0.0011 (J)			<0.03	
5/24/2017	0.0017 (J)						
8/10/2017	0.0017 (J)	<0.03	<0.03			<0.03	
11/13/2017	<0.03	<0.03					
11/14/2017			<0.03			<0.03	
6/4/2018	0.0016 (J)	<0.03					
6/5/2018			0.001 (J)				
6/6/2018						<0.03	
10/1/2018	<0.03	<0.03	0.001 (J)				
10/3/2018						<0.03	
8/21/2019	0.0018 (J)	<0.03	0.0011 (J)				
8/22/2019						<0.03	
10/21/2019	0.0026 (J)						
10/22/2019		<0.03	0.0011 (J)				
10/23/2019						<0.03	0.0012 (J)
1/3/2020							0.0011 (J)
3/4/2020							0.0013 (J)
3/24/2020	0.0039 (J)	<0.03					0.00084 (J)
3/25/2020	. ,					<0.03	, ,
4/9/2020			0.0017 (J)				
6/18/2020			()				0.0013 (J)
7/21/2020							0.0013 (J)
8/25/2020	0.0033 (J)	<0.03	0.0014 (J)				, ,
8/27/2020	. ,					<0.03	0.0011 (J)
9/18/2020	0.0021 (J)	<0.03		0.0026 (J)	0.0051 (J)		. ,
9/22/2020			0.0018 (J)				
9/24/2020						<0.03	0.0011 (J)
11/10/2020				0.0028 (J)			(-,
11/11/2020				(1)	0.0036 (J)		
12/15/2020				0.0026 (J)	0.0045 (J)		
1/19/2021				0.003 (J)	0.0032 (J)		
3/11/2021	0.0047 (J)			(,,	(-)		
3/12/2021		<0.03		0.0031 (J)	0.0031 (J)		
3/16/2021			0.0026 (J)	(-/	(-)		
3/17/2021			(0)			<0.03	0.0012 (J)
8/12/2021	0.002 (J)	<0.03	0.00094 (J)	0.0029 (J)	0.0037 (J)	2.00	1.30.2 (0)
8/13/2021	(-)			(0)	(0)		0.0011 (J)
8/16/2021						<0.03	2.30(0)
3/10/2021						0.00	

Constituent: Lithium (mg/L) Analysis Run 11/18/2021 2:06 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

					. ,		
	HGWC-103	HGWC-105	HGWC-107	HGWC-109	HGWC-117	HGWC-118	HGWC-117A
8/31/2016	< 0.03	0.0034 (J)	<0.03	<0.03	0.0024 (J)	<0.03	
10/20/201	16				0.0027 (J)	<0.03	
10/24/201	16 <0.03						
10/25/201	16	0.0043 (J)	<0.03	<0.03			
1/27/2017	7				<0.03		
1/31/2017	< 0.03	0.0042 (J)	<0.03	<0.03		<0.03	
5/23/2017	7 0.0012 (J)				<0.03	0.0012 (J)	
5/24/2017	7	0.0039 (J)	<0.03	0.0012 (J)			
8/10/2017	7 0.0016 (J)	0.004 (J)	<0.03	<0.03	0.0021 (J)	<0.03	
11/14/201	17 0.0015 (J)	0.0044 (J)	<0.03	<0.03	<0.03	<0.03	
6/6/2018	0.0017 (J)	0.0041 (J)	0.00099 (J)	0.0013 (J)			
6/7/2018					0.0011 (J)	0.0015 (J)	
10/2/2018	3	0.0041 (J)	<0.03	0.0013 (J)			
10/3/2018	0.0016 (J)				0.0021 (J)	<0.03	
8/22/2019	0.0015 (J)	0.004 (J)			0.0012 (J)	0.0018 (J)	
8/23/2019)		0.00092 (J)	0.0009 (J)			
10/22/201	19		0.00094 (J)	0.00088 (J)	0.0028 (J)	0.0027 (J)	
10/23/201	19 0.002 (J)	0.0039 (J)					
3/24/2020)				0.0029 (J)		
3/25/2020	0.0016 (J)	0.0041 (J)	0.00091 (J)	<0.03		0.0017 (J)	
8/26/2020)					0.0028 (J)	
8/27/2020	0.0016 (J)	0.0037 (J)	<0.03	0.0011 (J)	0.0024 (J)		
9/24/2020	0.0017 (J)	0.0038 (J)	0.00098 (J)				
9/25/2020				0.001 (J)	0.0031 (J)		
9/28/2020)					0.0022 (J)	
3/17/2021	1			<0.03			
3/18/2021	. ,	0.0042 (J)	0.0011 (J)			0.0029 (J)	
3/19/2021					0.0035 (J)		
8/12/2021							0.0036 (J)
8/13/2021		0.0038 (J)	0.00084 (J)	<0.03		0.0017 (J)	
8/16/2021	. ,						
8/19/2021					0.0017 (J)		
9/27/2021	I				0.0016 (J)		0.0035 (J)

Constituent: Mercury (mg/L) Analysis Run 11/18/2021 2:06 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

	HGWA-111 (bg)	HGWA-112 (bg)	HGWA-113 (bg)	HGWA-47 (bg)	HGWA-48D (bg)	HGWC-101	HGWC-102
8/30/2016	4E-05 (J)	4.1E-05 (J)	4E-05 (J)				
8/31/2016						<0.0002	
10/20/2016	<0.0002					<0.0002	
10/24/2016		<0.0002	<0.0002				
1/25/2017	4E-05 (J)	4E-05 (J)	4E-05 (J)				
1/31/2017						9.3E-05 (J)	
5/23/2017		<0.0002	<0.0002			<0.0002	
5/24/2017	<0.0002						
8/10/2017	<0.0002	<0.0002	<0.0002			<0.0002	
11/13/2017	<0.0002	<0.0002					
11/14/2017			<0.0002			<0.0002	
6/4/2018	<0.0002	<0.0002					
6/5/2018			<0.0002				
6/6/2018						<0.0002	
10/1/2018	4.3E-05 (J)	3.9E-05 (J)	4.3E-05 (J)				
10/3/2018						<0.0002	
8/21/2019	<0.0002	<0.0002	<0.0002				
8/22/2019						<0.0002	
10/23/2019							<0.0002
1/3/2020							<0.0002
3/4/2020							<0.0002
3/24/2020							<0.0002
6/18/2020							<0.0002
7/21/2020							<0.0002
8/25/2020	<0.0002	<0.0002	<0.0002				
8/27/2020						<0.0002	<0.0002
9/18/2020				<0.0002	<0.0002		
9/24/2020							<0.0002
11/10/2020				<0.0002			
11/11/2020					<0.0002		
12/15/2020				<0.0002	<0.0002		
1/19/2021				<0.0002	<0.0002		
8/12/2021	<0.0002 (ND)	0.00011 (J)	<0.0002	8.1E-05 (J)	0.00018 (J)		
8/13/2021							0.0001 (J)
8/16/2021						9.9E-05 (J)	

Constituent: Mercury (mg/L) Analysis Run 11/18/2021 2:06 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

	HGWC-103	HGWC-105	HGWC-107	HGWC-109	HGWC-117	HGWC-118	HGWC-117A
8/31/2016	<0.0002	<0.0002	<0.0002	<0.0002	7E-05 (J)	<0.0002	
10/20/2016					<0.0002	<0.0002	
10/24/2016	<0.0002						
10/25/2016		<0.0002	<0.0002	<0.0002			
1/27/2017					<0.0002		
1/31/2017	8E-05 (J)	<0.0002	<0.0002	8E-05 (J)		9E-05 (J)	
5/23/2017	<0.0002				<0.0002	<0.0002	
5/24/2017		<0.0002	<0.0002	<0.0002			
8/10/2017	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	
11/14/2017	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	
6/6/2018	<0.0002	<0.0002	<0.0002	<0.0002			
6/7/2018					<0.0002	<0.0002	
10/2/2018		<0.0002	<0.0002	<0.0002			
10/3/2018	<0.0002				<0.0002	<0.0002	
8/22/2019	<0.0002	<0.0002			<0.0002	<0.0002	
8/23/2019			<0.0002	<0.0002			
8/26/2020						<0.0002	
8/27/2020	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002		
8/12/2021							9.4E-05 (J)
8/13/2021		0.00022	8.4E-05 (J)	8E-05 (J)		8.1E-05 (J)	
8/16/2021	0.00027						
8/19/2021					0.0003		
9/27/2021					<0.0002		<0.0002

Constituent: Molybdenum (mg/L) Analysis Run 11/18/2021 2:06 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

	HGWA-111 (bg)	HGWA-112 (bg)	HGWA-113 (bg)	HGWA-47 (bg)	HGWA-48D (bg)	HGWC-101	HGWC-102
8/30/2016	<0.01	<0.01	<0.01				
8/31/2016						<0.01	
10/20/2016	<0.01					<0.01	
10/24/2016		<0.01	<0.01				
1/25/2017	<0.01	<0.01	<0.01				
1/31/2017						<0.01	
5/23/2017		<0.01	<0.01			<0.01	
5/24/2017	<0.01						
8/10/2017	<0.01	<0.01	<0.01			<0.01	
11/13/2017	<0.01	<0.01					
11/14/2017			<0.01			<0.01	
6/4/2018	<0.01	<0.01					
6/5/2018			<0.01				
6/6/2018						<0.01	
10/1/2018	<0.01	<0.01	<0.01				
10/3/2018						<0.01	
8/21/2019	<0.01	<0.01	<0.01				
8/22/2019						<0.01	
10/23/2019							<0.01
1/3/2020							<0.01
3/4/2020							<0.01
3/24/2020							<0.01
6/18/2020							<0.01
7/21/2020							<0.01
8/25/2020	<0.01	<0.01	<0.01				
8/27/2020						<0.01	<0.01
9/18/2020				0.0015 (J)	0.0026 (J)		
9/24/2020							<0.01
11/10/2020				<0.01			
11/11/2020					0.0012 (J)		
12/15/2020				<0.01	0.00097 (J)		
1/19/2021				<0.01	0.0018 (J)		
8/12/2021	<0.01	<0.01	<0.01	<0.01	0.0019 (J)		
8/13/2021							<0.01
8/16/2021						<0.01	

Constituent: Molybdenum (mg/L) Analysis Run 11/18/2021 2:06 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

	HGWC-103	HGWC-105	HGWC-107	HGWC-109	HGWC-117	HGWC-118	HGWC-117A
8/31/2016	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
10/20/2016					<0.01	<0.01	
10/24/2016	<0.01						
10/25/2016		<0.01	<0.01	<0.01			
1/27/2017					<0.01		
1/31/2017	<0.01	<0.01	<0.01	<0.01		<0.01	
5/23/2017	<0.01				<0.01	<0.01	
5/24/2017		<0.01	<0.01	<0.01			
8/10/2017	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
11/14/2017	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
6/6/2018	<0.01	<0.01	<0.01	<0.01			
6/7/2018					<0.01	<0.01	
10/2/2018		<0.01	<0.01	<0.01			
10/3/2018	<0.01				<0.01	<0.01	
8/22/2019	<0.01	<0.01			<0.01	<0.01	
8/23/2019			<0.01	<0.01			
8/26/2020						<0.01	
8/27/2020	<0.01	<0.01	<0.01	<0.01	<0.01		
8/12/2021							<0.01
8/13/2021		<0.01	<0.01	<0.01		<0.01	
8/16/2021	<0.01						
8/19/2021					<0.01		
9/27/2021					<0.01		<0.01

Constituent: pH (s.u.) Analysis Run 11/18/2021 2:06 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

	HGWA-111 (bg)	HGWA-112 (bg)	HGWA-113 (bg)	HGWA-47 (bg)	HGWA-48D (bg)	HGWC-101	HGWC-102
8/30/2016	6.89	5.77	5.99				
8/31/2016						5.35	
10/20/2016	6.73					5.3	
10/24/2016		5.61	5.84				
1/25/2017	7.02	5.68	6.04				
1/31/2017						5.24	
5/23/2017		5.7	6.01			5.39	
5/24/2017	6.44						
8/10/2017	6.79	5.59	5.98			5.47	
11/13/2017	5.94	5.56					
11/14/2017			6.16			5.4	
6/4/2018	6.12	5.62					
6/5/2018			5.86				
6/6/2018						5.37	
10/1/2018	5.92	5.62	5.94				
10/3/2018						5.39	
4/1/2019	7.09						
4/2/2019		5.47	6				
4/4/2019						5.31	
6/18/2019						5.3	
8/21/2019	6.6	5.8	6.05				
8/22/2019						5.39	
10/21/2019	7.02						
10/22/2019	7.02	5.7	5.98				
10/23/2019						5.33	5.68
1/3/2020							5.64
3/4/2020							5.75
3/24/2020	7.37	5.64					5.58
3/25/2020						5.53	
4/9/2020			6.08			0.00	
6/18/2020			0.00				5.67
7/21/2020							5.72
8/25/2020	6.7	5.53	5.95				0.72
8/27/2020	0.7	5.55	5.55			5.32	5.7
9/18/2020	6.46	5.58		7.54	7.5	3.32	3.7
9/22/2020	0.40	5.56	6.1	7.54	7.5		
9/24/2020			0.1			5.48	5.82
				7.24		5.46	3.02
11/10/2020				7.34	7.4		
11/11/2020 12/15/2020				7.07	7.4		
				7.27	7.39		
1/19/2021	7.0			7.32	7.4		
3/11/2021	7.2	F.C.		7.50	7.54		
3/12/2021		5.6	0.14	7.52	7.51		
3/16/2021			6.14			F 44	F 70
3/17/2021	0.07		0.00	7.00	7.44	5.41	5.78
8/12/2021	6.67	5.5	6.08	7.38	7.44		F. 45
8/13/2021						F.4	5.45
8/16/2021						5.4	

Constituent: pH (s.u.) Analysis Run 11/18/2021 2:06 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

	HGWC-103	HGWC-105	HGWC-107	HGWC-109	HGWC-117	HGWC-118	HGWC-117A
8/31/2016	5.54	6.5	6.11	6.78	6.07	7.03	
10/20/2016					6	7.01	
10/24/2016	5.48						
10/25/2016		6.34	6.04	6.55			
1/27/2017					6.2		
1/31/2017	5.51	6.43	5.94	6.5		6.96	
5/23/2017	5.98				5.27	6.92	
5/24/2017		6.31	6.06	6.42			
8/10/2017	5.63	6.45	6.06	6.63	6.27	6.99	
11/14/2017	5.59	6.53	5.99	6.5	5.4	6.9	
6/6/2018	5.49	6.49	6	6.59			
6/7/2018					5.29	7.03	
10/2/2018		6.18	6.18	6.54			
10/3/2018	5.53				6.08	7.08	
4/3/2019			6.06	6.42			
4/4/2019	5.44	6.17					
4/5/2019					5.99	6.96	
6/17/2019	5.53						
8/22/2019	5.55	6.04			5.53	6.93	
8/23/2019			6.26	6.76			
10/22/2019			6.19	6.58	6.17	7.03	
10/23/2019	5.49	6.46					
3/24/2020					5.99		
3/25/2020	5.49	6.47	6.13	6.56		6.89	
8/26/2020						6.97	
8/27/2020	5.82	6.45	6.09	6.64	5.92		
9/24/2020	5.6	6.63	6.11				
9/25/2020				6.79	6.01		
9/28/2020						7.03	
3/17/2021				6.55			
3/18/2021	5.51	6.57	6.2			7.11	
3/19/2021					6.14		
8/12/2021							6.27
8/13/2021		6.44	6.11	6.71		6.78	
8/16/2021	5.59						
8/19/2021					6.04		
9/27/2021					5.66		6.14

Constituent: Selenium (mg/L) Analysis Run 11/18/2021 2:06 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

	HGWA-111 (bg)	HGWA-112 (bg)	HGWA-113 (bg)	HGWA-47 (bg)	HGWA-48D (bg)	HGWC-101	HGWC-102
8/30/2016	<0.005	<0.005	0.0027 (J)				
8/31/2016						<0.005	
10/20/2016	<0.005					<0.005	
10/24/2016		<0.005	0.0034 (J)				
1/25/2017	<0.005	<0.005	0.0023 (J)				
1/31/2017						<0.005	
5/23/2017		<0.005	0.0024 (J)			<0.005	
5/24/2017	<0.005						
8/10/2017	<0.005	<0.005	0.0023 (J)			<0.005	
11/13/2017	<0.005	<0.005					
11/14/2017			<0.005			<0.005	
6/4/2018	<0.005	<0.005					
6/5/2018			0.0019 (J)				
6/6/2018						<0.005	
10/1/2018	<0.005	<0.005	0.0024 (J)				
10/3/2018						<0.005	
8/21/2019	<0.005	<0.005	0.0025 (J)				
8/22/2019						<0.005	
10/23/2019							<0.005
1/3/2020							0.0015 (J)
3/4/2020							<0.005
3/24/2020							<0.005
6/18/2020							<0.005
7/21/2020							<0.005
8/25/2020	<0.005	<0.005	<0.005				
8/27/2020						<0.005	<0.005
9/18/2020				<0.005	<0.005		
9/24/2020							<0.005
11/10/2020				<0.005			
11/11/2020					<0.005		
12/15/2020				<0.005	<0.005		
1/19/2021				<0.005	<0.005		
8/12/2021	<0.005	<0.005	0.0023 (J)	<0.005	<0.005		
8/13/2021							<0.005
8/16/2021						<0.005	

Constituent: Selenium (mg/L) Analysis Run 11/18/2021 2:06 PM View: Constituents View

Plant Hammond Client: Southern Company Data: Hammond AP-4

	HGWC-103	HGWC-105	HGWC-107	HGWC-109	HGWC-117	HGWC-118	HGWC-117A
8/31/2016	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	
10/20/2016					<0.005	<0.005	
10/24/2016	<0.005						
10/25/2016		<0.005	<0.005	<0.005			
1/27/2017					<0.005		
1/31/2017	<0.005	<0.005	<0.005	<0.005		<0.005	
5/23/2017	<0.005				<0.005	<0.005	
5/24/2017		<0.005	<0.005	<0.005			
8/10/2017	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	
11/14/2017	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	
6/6/2018	<0.005	<0.005	<0.005	<0.005			
6/7/2018					<0.005	<0.005	
10/2/2018		<0.005	<0.005	<0.005			
10/3/2018	<0.005				<0.005	<0.005	
8/22/2019	<0.005	<0.005			<0.005	<0.005	
8/23/2019			<0.005	<0.005			
8/26/2020						<0.005	
8/27/2020	<0.005	<0.005	<0.005	<0.005	<0.005		
8/12/2021							<0.005
8/13/2021		<0.005	<0.005	<0.005		<0.005	
8/16/2021	<0.005						
8/19/2021					<0.005		
9/27/2021					<0.005		<0.005

Constituent: Sulfate (mg/L) Analysis Run 11/18/2021 2:06 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

					outilities outilities	Data: 11a11111011a71	•
	HGWA-111 (bg)	HGWA-112 (bg)	HGWA-113 (bg)	HGWA-47 (bg)	HGWA-48D (bg)	HGWC-101	HGWC-102
8/30/2016	1.6	0.63 (J)	14				
8/31/2016						110	
10/20/2016	1.6					110	
10/24/2016		0.62 (J)	11				
1/25/2017	1.6	0.62 (J)	12				
1/31/2017						120	
5/23/2017		0.55 (J)	12			97	
5/24/2017	1.4						
8/10/2017	1.6	0.66 (J)	11			96	
11/13/2017	1.3	0.61 (J)					
11/14/2017			11			110	
6/4/2018	1.4	0.73 (J)					
6/5/2018		. ,	9.9				
6/6/2018						95.5	
10/1/2018	1	0.52 (J)	6.7				
10/3/2018		. ,				121	
4/1/2019	1.7						
4/2/2019		0.78 (J)	8.7				
4/4/2019		. ,				95.1	
6/18/2019						102	
10/21/2019	1.8						
10/22/2019		0.6 (J)	6.8				
10/23/2019		.,				101	<1
1/3/2020							380
3/4/2020							400
3/24/2020	1.6	<1					311
3/25/2020						85.5	
4/9/2020			6.6				
6/18/2020							349
7/21/2020							378
8/27/2020							382
9/18/2020	1	<1		3.5	9.5		
9/22/2020			5.3				
9/24/2020						97	370
11/10/2020				2.3			
11/11/2020					4.5		
12/15/2020				2.4	4.2		
1/19/2021				2.6	3.9		
3/11/2021	1.5						
3/12/2021		0.52 (J)		1.9	4.7		
3/16/2021			7.7				
3/17/2021						107	332
8/12/2021	1.3	<1	10	1.4	4.3		
8/13/2021							248
8/16/2021						72.1	

Constituent: Sulfate (mg/L) Analysis Run 11/18/2021 2:06 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

					. ,		
	HGWC-103	HGWC-105	HGWC-107	HGWC-109	HGWC-117	HGWC-118	HGWC-117A
8/31/2016	280	190	130	36	150	88	
10/20/2016					150	81	
10/24/2016	280						
10/25/2016		190	130	41			
1/27/2017					150		
1/31/2017	300	210	130	37		87	
5/23/2017	340				110	84	
5/24/2017		180	130	40			
8/10/2017	300	180	130	40	140	78	
11/14/2017	310	170	130	40	110	79	
6/6/2018	351	168	132	49.7			
6/7/2018					103	60.1	
10/2/2018		173	132	42.3			
10/3/2018	381				169	91.5	
4/3/2019			139	36			
4/4/2019	358	185					
4/5/2019					141	75.1	
6/17/2019	311	162	126	30.9			
6/18/2019					116	77	
10/22/2019			123	23.2	133	80.9	
10/23/2019	248	162					
3/24/2020					129		
3/25/2020	251	161	116	27.9		78.4	
9/24/2020	293	177	126				
9/25/2020				24.7	146		
9/28/2020						86	
3/17/2021				28.3			
3/18/2021	286	196	128			87.8	
3/19/2021					162		
8/12/2021							64.6
8/13/2021		142	112	24.4		75.1	
8/16/2021	354						
8/19/2021					108		
9/27/2021					104		69.7

Constituent: Thallium (mg/L) Analysis Run 11/18/2021 2:06 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

	HGWA-111 (bg)	HGWA-112 (bg)	HGWA-113 (bg)	HGWA-47 (bg)	HGWA-48D (bg)	HGWC-101	HGWC-102
8/30/2016	<0.001	<0.001	<0.001				
8/31/2016						<0.001	
10/20/2016	<0.001					<0.001	
10/24/2016		<0.001	<0.001				
1/25/2017	<0.001	<0.001	<0.001				
1/31/2017						<0.001	
5/23/2017		<0.001	<0.001			<0.001	
5/24/2017	<0.001						
8/10/2017	<0.001	<0.001	<0.001			<0.001	
11/13/2017	<0.001	<0.001					
11/14/2017			<0.001			<0.001	
6/4/2018	<0.001	<0.001					
6/5/2018			<0.001				
6/6/2018						<0.001	
10/1/2018	<0.001	<0.001	<0.001				
10/3/2018						<0.001	
8/21/2019	<0.001	<0.001	<0.001				
8/22/2019						<0.001	
10/23/2019							<0.001
1/3/2020							8E-05 (J)
3/4/2020							<0.001
3/24/2020							<0.001
6/18/2020							<0.001
7/21/2020							<0.001
8/25/2020	<0.001	<0.001	<0.001				
8/27/2020						<0.001	<0.001
9/18/2020				<0.001	<0.001		
9/24/2020							<0.001
11/10/2020				<0.001			
11/11/2020					<0.001		
12/15/2020				<0.001	<0.001		
1/19/2021				<0.001	<0.001		
8/12/2021	<0.001	<0.001	<0.001	<0.001	<0.001		
8/13/2021							<0.001
8/16/2021						<0.001	

Constituent: Thallium (mg/L) Analysis Run 11/18/2021 2:06 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

	HGWC-103	HGWC-105	HGWC-107	HGWC-109	HGWC-117	HGWC-118	HGWC-117A
8/31/2016	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	
10/20/2016					<0.001	<0.001	
10/24/2016	<0.001						
10/25/2016		<0.001	<0.001	<0.001			
1/27/2017					<0.001		
1/31/2017	<0.001	<0.001	<0.001	<0.001		<0.001	
5/23/2017	<0.001				<0.001	<0.001	
5/24/2017		<0.001	<0.001	<0.001			
8/10/2017	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	
11/14/2017	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	
6/6/2018	<0.001	<0.001	<0.001	<0.001			
6/7/2018					<0.001	<0.001	
10/2/2018		<0.001	<0.001	<0.001			
10/3/2018	<0.001				<0.001	<0.001	
8/22/2019	<0.001	<0.001			<0.001	<0.001	
8/23/2019			<0.001	<0.001			
8/26/2020						<0.001	
8/27/2020	<0.001	<0.001	<0.001	<0.001	<0.001		
8/12/2021							<0.001
8/13/2021		<0.001	<0.001	<0.001		<0.001	
8/16/2021	<0.001						
8/19/2021					<0.001		
9/27/2021					<0.001		<0.001

Constituent: Total Dissolved Solids (mg/L) Analysis Run 11/18/2021 2:06 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Hammond AP-4

	HGWA-111 (bg)	HGWA-112 (bg)	HGWA-113 (bg)	HGWA-47 (bg)	HGWA-48D (bg)	HGWC-101	HGWC-102
8/30/2016	172	76	77				
8/31/2016						278	
10/20/2016	108					165	
10/24/2016		65	111				
1/25/2017	345	152 (o)	155				
1/31/2017						263	
5/23/2017		52	74			190	
5/24/2017	126						
8/10/2017	174	60	94			175	
11/13/2017	158	75					
11/14/2017			89			253	
6/4/2018	131	70					
6/5/2018			92				
6/6/2018						188	
10/1/2018	101	76	91				
10/3/2018						238	
4/1/2019	213						
4/2/2019		69	94				
4/4/2019						149	
10/21/2019	187						
10/22/2019		81	95				
10/23/2019						221	736
1/3/2020							714
3/4/2020							764
3/24/2020	207	52					521
3/25/2020						187	
4/9/2020			48				
6/18/2020							652
7/21/2020							669
8/27/2020							663
9/18/2020	139	62		195	224		
9/22/2020			84				
9/24/2020						170	696
11/10/2020				229			
11/11/2020					221		
12/15/2020				233	239		
1/19/2021				199	224		
3/11/2021	207						
3/12/2021		56		217	204		
3/16/2021			99				
3/17/2021						213	626
8/12/2021	157	63	92	212	234		
8/13/2021							647
8/16/2021						206	

Constituent: Total Dissolved Solids (mg/L) Analysis Run 11/18/2021 2:06 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

	HGWC-103	HGWC-105	HGWC-107	HGWC-109	HGWC-117	HGWC-118	HGWC-117A
8/31/2016	483	389	235	182	381	373	
10/20/2016					319	305	
10/24/2016	517						
10/25/2016		316	223	172			
1/27/2017					407		
1/31/2017	516	437	346	252		361	
5/23/2017	637				258	359	
5/24/2017		352	234	184			
8/10/2017	459	356	254	208	359	325	
11/14/2017	545	375	313	252	310	373	
6/6/2018	559	385	278	224			
6/7/2018					223	338	
10/2/2018		374	274	230			
10/3/2018	582				337	328	
4/3/2019			273	210			
4/4/2019	535	340					
4/5/2019					334	308	
6/17/2019	515	370	272				
6/18/2019					254	215	
10/22/2019			308	212	348	354	
10/23/2019	507	419					
3/24/2020					331		
3/25/2020	507	417	297	213		347	
9/24/2020	517	411	253				
9/25/2020				188	340		
9/28/2020						332	
3/17/2021				171			
3/18/2021	465	410	255			328	
3/19/2021					371		
8/12/2021							256
8/13/2021		441	291	189		336	
8/16/2021	672						
8/19/2021					253		
9/27/2021					242		223

FIGURE B.

Constituent: Antimony Analysis Run 11/18/2021 2:08 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

Constituent: Arsenic Analysis Run 11/18/2021 2:08 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Hammond AP-4

Box & Whiskers Plot

Constituent: Antimony Analysis Run 11/18/2021 2:08 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

Sanitas™ v.9.6.31 . UG

0.005 0.004 0.003 0.002 0.001

Constituent: Arsenic Analysis Run 11/18/2021 2:08 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Hammond AP-4

Constituent: Barium Analysis Run 11/18/2021 2:08 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

Box & Whiskers Plot

Constituent: Beryllium Analysis Run 11/18/2021 2:08 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

Box & Whiskers Plot

Constituent: Barium Analysis Run 11/18/2021 2:08 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Hammond AP-4

Sanitas™ v.9.6.31 . UG

Box & Whiskers Plot

Constituent: Beryllium Analysis Run 11/18/2021 2:08 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Hammond AP-4

Constituent: Boron Analysis Run 11/18/2021 2:08 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Hammond AP-4

Box & Whiskers Plot

Constituent: Cadmium Analysis Run 11/18/2021 2:08 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Hammond AP-4

Box & Whiskers Plot

Constituent: Boron Analysis Run 11/18/2021 2:08 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

Sanitas™ v.9.6.31 . UG

Box & Whiskers Plot

Constituent: Cadmium Analysis Run 11/18/2021 2:08 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Hammond AP-4

Constituent: Calcium Analysis Run 11/18/2021 2:08 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

Box & Whiskers Plot

Constituent: Calcium Analysis Run 11/18/2021 2:08 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Hammond AP-4

Sanitas™ v.9.6.31 . UG

Box & Whiskers Plot

Constituent: Chloride Analysis Run 11/18/2021 2:08 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Hammond AP-4

Sanitas™ v.9.6.31 . UG

Box & Whiskers Plot

Constituent: Chloride Analysis Run 11/18/2021 2:08 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Hammond AP-4

Constituent: Chromium Analysis Run 11/18/2021 2:08 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

Box & Whiskers Plot

Constituent: Cobalt Analysis Run 11/18/2021 2:08 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Hammond AP-4

Box & Whiskers Plot

Constituent: Chromium Analysis Run 11/18/2021 2:08 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

Sanitas™ v.9.6.31 . UG

Box & Whiskers Plot

Constituent: Cobalt Analysis Run 11/18/2021 2:08 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Hammond AP-4

Constituent: Combined Radium 226 & 228 Analysis Run 11/18/2021 2:08 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

Box & Whiskers Plot

Constituent: Combined Radium 226 & 228 Analysis Run 11/18/2021 2:08 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

Sanitas™ v.9.6.31 . UG

Box & Whiskers Plot

Constituent: Fluoride Analysis Run 11/18/2021 2:08 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Hammond AP-4

Sanitas™ v.9.6.31 . UG

Box & Whiskers Plot

Constituent: Fluoride Analysis Run 11/18/2021 2:08 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Hammond AP-4

Constituent: Lead Analysis Run 11/18/2021 2:08 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

Box & Whiskers Plot

Constituent: Lithium Analysis Run 11/18/2021 2:08 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Hammond AP-4

Box & Whiskers Plot

Constituent: Lead Analysis Run 11/18/2021 2:08 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

Sanitas™ v.9.6.31 . UG

Box & Whiskers Plot

Constituent: Lithium Analysis Run 11/18/2021 2:08 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Hammond AP-4

Box & Whiskers Plot

Constituent: Mercury Analysis Run 11/18/2021 2:08 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

Sanitas™ v.9.6.31 . UG

Constituent: Molybdenum Analysis Run 11/18/2021 2:08 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

Box & Whiskers Plot

Constituent: Mercury Analysis Run 11/18/2021 2:08 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Hammond AP-4

Sanitas™ v.9.6.31 . UG

0.01 0.008 0.006 0.002 0.002

Constituent: Molybdenum Analysis Run 11/18/2021 2:08 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

Constituent: pH Analysis Run 11/18/2021 2:08 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Hammond AP-4

Box & Whiskers Plot

Constituent: Selenium Analysis Run 11/18/2021 2:08 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

Box & Whiskers Plot

Constituent: pH Analysis Run 11/18/2021 2:08 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Hammond AP-4

Sanitas™ v.9.6.31 . UG

Box & Whiskers Plot

Constituent: Selenium Analysis Run 11/18/2021 2:08 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Hammond AP-4

Constituent: Sulfate Analysis Run 11/18/2021 2:08 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Hammond AP-4

Constituent: Sulfate Analysis Run 11/18/2021 2:08 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Hammond AP-4

Box & Whiskers Plot

Constituent: Thallium Analysis Run 11/18/2021 2:08 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Hammond AP-4

Sanitas™ v.9.6.31 . UG

Box & Whiskers Plot

Constituent: Thallium Analysis Run 11/18/2021 2:08 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Hammond AP-4

Constituent: Total Dissolved Solids Analysis Run 11/18/2021 2:08 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

Sanitas™ v.9.6.31 . UG

Box & Whiskers Plot

Constituent: Total Dissolved Solids Analysis Run 11/18/2021 2:08 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Hammond AP-4

FIGURE C.

Outlier Summary

Plant Hammond Client: Southern Company Data: Hammond AP-4 Printed 10/13/2021, 3:46 PM

HGWA-112 Total Dissolved Solids (mg/L)

1/25/2017 152 (o)

FIGURE D.

Appendix III Interwell Prediction Limits - Significant Results

Plant Hammond Client: Southern Company Data: Hammond AP-4 Printed 10/13/2021, 3:49 PM

Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	Sig.	Bg N	Bg Mean	Std. Dev.	%NDs	ND Adj.	Transform	<u>Alpha</u>	Method
Boron (mg/L)	HGWC-101	0.02002	n/a	8/16/2021	0.13	Yes	54	0.2065	0.03296	20.37	Kaplan-Meie	rx^(1/3)	0.0009403	Param Inter 1 of 2
Boron (mg/L)	HGWC-102	0.02002	n/a	8/13/2021	2.4	Yes	54	0.2065	0.03296	20.37	Kaplan-Meie	rx^(1/3)	0.0009403	Param Inter 1 of 2
Boron (mg/L)	HGWC-103	0.02002	n/a	8/16/2021	3.2	Yes	54	0.2065	0.03296	20.37	Kaplan-Meie	rx^(1/3)	0.0009403	Param Inter 1 of 2
Boron (mg/L)	HGWC-105	0.02002	n/a	8/13/2021	1.2	Yes	54	0.2065	0.03296	20.37	Kaplan-Meie	rx^(1/3)	0.0009403	Param Inter 1 of 2
Boron (mg/L)	HGWC-107	0.02002	n/a	8/13/2021	0.73	Yes	54	0.2065	0.03296	20.37	Kaplan-Meie	rx^(1/3)	0.0009403	Param Inter 1 of 2
Boron (mg/L)	HGWC-109	0.02002	n/a	8/13/2021	0.24	Yes	54	0.2065	0.03296	20.37	Kaplan-Meie	rx^(1/3)	0.0009403	Param Inter 1 of 2
Boron (mg/L)	HGWC-117	0.02002	n/a	8/19/2021	0.78	Yes	54	0.2065	0.03296	20.37	Kaplan-Meie	rx^(1/3)	0.0009403	Param Inter 1 of 2
Boron (mg/L)	HGWC-118	0.02002	n/a	8/13/2021	0.59	Yes	54	0.2065	0.03296	20.37	Kaplan-Meie	rx^(1/3)	0.0009403	Param Inter 1 of 2
Calcium (mg/L)	HGWC-102	73.3	n/a	8/13/2021	119	Yes	54	n/a	n/a	0	n/a	n/a	0.0006486	NP Inter (normality) 1 of 2
Calcium (mg/L)	HGWC-103	73.3	n/a	8/16/2021	124	Yes	54	n/a	n/a	0	n/a	n/a	0.0006486	NP Inter (normality) 1 of 2
Calcium (mg/L)	HGWC-105	73.3	n/a	8/13/2021	102	Yes	54	n/a	n/a	0	n/a	n/a	0.0006486	NP Inter (normality) 1 of 2
Calcium (mg/L)	HGWC-118	73.3	n/a	8/13/2021	84.3	Yes	54	n/a	n/a	0	n/a	n/a	0.0006486	NP Inter (normality) 1 of 2
Chloride (mg/L)	HGWC-103	6.743	n/a	8/16/2021	10.4	Yes	54	1.066	0.4274	0	None	In(x)	0.0009403	Param Inter 1 of 2
pH (s.u.)	HGWC-101	7.54	5.47	8/16/2021	5.4	Yes	60	n/a	n/a	0	n/a	n/a	0.001038	NP Inter (normality) 1 of 2
pH (s.u.)	HGWC-102	7.54	5.47	8/13/2021	5.45	Yes	60	n/a	n/a	0	n/a	n/a	0.001038	NP Inter (normality) 1 of 2
Sulfate (mg/L)	HGWC-101	18.71	n/a	8/16/2021	72.1	Yes	54	0.7984	1.08	5.556	None	In(x)	0.0009403	Param Inter 1 of 2
Sulfate (mg/L)	HGWC-102	18.71	n/a	8/13/2021	248	Yes	54	0.7984	1.08	5.556	None	In(x)	0.0009403	Param Inter 1 of 2
Sulfate (mg/L)	HGWC-103	18.71	n/a	8/16/2021	354	Yes	54	0.7984	1.08	5.556	None	In(x)	0.0009403	Param Inter 1 of 2
Sulfate (mg/L)	HGWC-105	18.71	n/a	8/13/2021	142	Yes	54	0.7984	1.08	5.556	None	In(x)	0.0009403	Param Inter 1 of 2
Sulfate (mg/L)	HGWC-107	18.71	n/a	8/13/2021	112	Yes	54	0.7984	1.08	5.556	None	In(x)	0.0009403	Param Inter 1 of 2
Sulfate (mg/L)	HGWC-109	18.71	n/a	8/13/2021	24.4	Yes	54	0.7984	1.08	5.556	None	In(x)	0.0009403	Param Inter 1 of 2
Sulfate (mg/L)	HGWC-117	18.71	n/a	8/19/2021	108	Yes	54	0.7984	1.08	5.556	None	In(x)	0.0009403	Param Inter 1 of 2
Sulfate (mg/L)	HGWC-118	18.71	n/a	8/13/2021	75.1	Yes	54	0.7984	1.08	5.556	None	In(x)	0.0009403	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	HGWC-102	302.5	n/a	8/13/2021	647	Yes	53	4.997	0.8691	0	None	x^(1/3)	0.0009403	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	HGWC-103	302.5	n/a	8/16/2021	672	Yes	53	4.997	0.8691	0	None	x^(1/3)	0.0009403	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	HGWC-105	302.5	n/a	8/13/2021	441	Yes	53	4.997	0.8691	0	None	x^(1/3)	0.0009403	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	HGWC-118	302.5	n/a	8/13/2021	336	Yes	53	4.997	0.8691	0	None	x^(1/3)	0.0009403	Param Inter 1 of 2

Appendix III Interwell Prediction Limits - All Results

Plant Hammond Client: Southern Company Data: Hammond AP-4 Printed 10/13/2021, 3:49 PM

Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	Sig.	Bg N	Bg Mean	Std. Dev.	%NDs	ND Adj.	Transform	<u>Alpha</u>	Method
Boron (mg/L)	HGWC-101	0.02002	n/a	8/16/2021	0.13	Yes	54	0.2065	0.03296	20.37	Kaplan-Meie	rx^(1/3)	0.0009403	Param Inter 1 of 2
Boron (mg/L)	HGWC-102	0.02002	n/a	8/13/2021	2.4	Yes	54	0.2065	0.03296	20.37	Kaplan-Meie	rx^(1/3)	0.0009403	Param Inter 1 of 2
Boron (mg/L)	HGWC-103	0.02002	n/a	8/16/2021	3.2	Yes	54	0.2065	0.03296	20.37	Kaplan-Meie	rx^(1/3)	0.0009403	Param Inter 1 of 2
Boron (mg/L)	HGWC-105	0.02002	n/a	8/13/2021	1.2	Yes	54	0.2065	0.03296	20.37	Kaplan-Meie	rx^(1/3)	0.0009403	Param Inter 1 of 2
Boron (mg/L)	HGWC-107	0.02002	n/a	8/13/2021	0.73	Yes	54	0.2065	0.03296	20.37	Kaplan-Meie	rx^(1/3)	0.0009403	Param Inter 1 of 2
Boron (mg/L)	HGWC-109	0.02002	n/a	8/13/2021	0.24	Yes	54	0.2065	0.03296	20.37	Kaplan-Meie	rx^(1/3)	0.0009403	Param Inter 1 of 2
Boron (mg/L)	HGWC-117	0.02002	n/a	8/19/2021	0.78	Yes	54	0.2065	0.03296	20.37	Kaplan-Meie	rx^(1/3)	0.0009403	Param Inter 1 of 2
Boron (mg/L)	HGWC-118	0.02002	n/a	8/13/2021	0.59	Yes	54	0.2065	0.03296	20.37	Kaplan-Meie	rx^(1/3)	0.0009403	Param Inter 1 of 2
Calcium (mg/L)	HGWC-101	73.3	n/a	8/16/2021	22.8	No	54	n/a	n/a	0	n/a	n/a	0.0006486	NP Inter (normality) 1 of 2
Calcium (mg/L)	HGWC-102	73.3	n/a	8/13/2021	119	Yes	54	n/a	n/a	0	n/a	n/a	0.0006486	NP Inter (normality) 1 of 2
Calcium (mg/L)	HGWC-103	73.3	n/a	8/16/2021	124	Yes	54	n/a	n/a	0	n/a	n/a	0.0006486	NP Inter (normality) 1 of 2
Calcium (mg/L)	HGWC-105	73.3	n/a	8/13/2021	102	Yes	54	n/a	n/a	0	n/a	n/a	0.0006486	NP Inter (normality) 1 of 2
Calcium (mg/L)	HGWC-107	73.3	n/a	8/13/2021	57.8	No	54	n/a	n/a	0	n/a	n/a	0.0006486	NP Inter (normality) 1 of 2
Calcium (mg/L)	HGWC-109	73.3	n/a	8/13/2021	43.5	No	54	n/a	n/a	0	n/a	n/a	0.0006486	NP Inter (normality) 1 of 2
Calcium (mg/L)	HGWC-117	73.3	n/a	8/19/2021	40.9	No	54	n/a	n/a	0	n/a	n/a	0.0006486	NP Inter (normality) 1 of 2
Calcium (mg/L)	HGWC-118	73.3	n/a	8/13/2021	84.3	Yes	54	n/a	n/a	0	n/a	n/a	0.0006486	NP Inter (normality) 1 of 2
Chloride (mg/L)	HGWC-101	6.743	n/a	8/16/2021	5.4	No	54	1.066	0.4274	0	None	ln(x)	0.0009403	Param Inter 1 of 2
Chloride (mg/L)	HGWC-102	6.743	n/a	8/13/2021	6	No	54	1.066	0.4274	0	None	ln(x)	0.0009403	Param Inter 1 of 2
Chloride (mg/L)	HGWC-103	6.743	n/a	8/16/2021	10.4	Yes	54	1.066	0.4274	0	None	In(x)	0.0009403	Param Inter 1 of 2
Chloride (mg/L)	HGWC-105	6.743	n/a	8/13/2021	3.7	No	54	1.066	0.4274	0	None	ln(x)	0.0009403	Param Inter 1 of 2
Chloride (mg/L)	HGWC-107	6.743	n/a	8/13/2021	3.1	No	54	1.066	0.4274	0	None	ln(x)	0.0009403	Param Inter 1 of 2
Chloride (mg/L)	HGWC-109	6.743	n/a	8/13/2021	4	No	54	1.066	0.4274	0	None	ln(x)	0.0009403	Param Inter 1 of 2
Chloride (mg/L)	HGWC-117	6.743	n/a	8/19/2021	4	No	54	1.066	0.4274	0	None	ln(x)	0.0009403	Param Inter 1 of 2
Chloride (mg/L)	HGWC-118	6.743	n/a	8/13/2021	4	No	54	1.066	0.4274	0	None	ln(x)	0.0009403	Param Inter 1 of 2
Fluoride (mg/L)	HGWC-101	0.166	n/a	8/16/2021		No	60	0.07488	0.04656	26.67	Kaplan-Meier		0.0009403	Param Inter 1 of 2
Fluoride (mg/L)	HGWC-102	0.166	n/a	8/13/2021	0.1ND	No	60	0.07488	0.04656	26.67	Kaplan-Meier	· No	0.0009403	Param Inter 1 of 2
Fluoride (mg/L)	HGWC-103	0.166	n/a	8/16/2021		No	60	0.07488	0.04656	26.67	Kaplan-Meier		0.0009403	Param Inter 1 of 2
Fluoride (mg/L)	HGWC-105	0.166	n/a	8/13/2021		No	60	0.07488	0.04656	26.67	Kaplan-Meier		0.0009403	Param Inter 1 of 2
Fluoride (mg/L)	HGWC-107	0.166	n/a	8/13/2021	0.1ND	No	60	0.07488	0.04656	26.67	Kaplan-Meier		0.0009403	Param Inter 1 of 2
Fluoride (mg/L)	HGWC-109	0.166	n/a	8/13/2021		No	60	0.07488	0.04656	26.67	Kaplan-Meier		0.0009403	Param Inter 1 of 2
Fluoride (mg/L)	HGWC-117	0.166	n/a	8/19/2021		No	60	0.07488	0.04656	26.67	Kaplan-Meier		0.0009403	Param Inter 1 of 2
Fluoride (mg/L)	HGWC-118	0.166	n/a	8/13/2021		No	60	0.07488	0.04656	26.67	Kaplan-Meier		0.0009403	Param Inter 1 of 2
pH (s.u.)	HGWC-101	7.54	5.47	8/16/2021		Yes		n/a	n/a	0	n/a	n/a	0.001038	NP Inter (normality) 1 of 2
pH (s.u.)	HGWC-102	7.54	5.47	8/13/2021		Yes		n/a	n/a	0	n/a	n/a	0.001038	NP Inter (normality) 1 of 2
pH (s.u.)	HGWC-103	7.54	5.47	8/16/2021		No	60	n/a	n/a	0	n/a	n/a	0.001038	NP Inter (normality) 1 of 2
pH (s.u.)	HGWC-105	7.54	5.47	8/13/2021		No	60	n/a	n/a	0	n/a	n/a	0.001038	NP Inter (normality) 1 of 2
pH (s.u.)	HGWC-107	7.54	5.47	8/13/2021		No	60	n/a	n/a	0	n/a	n/a	0.001038	NP Inter (normality) 1 of 2
pH (s.u.)	HGWC-109	7.54	5.47	8/13/2021		No	60	n/a	n/a	0	n/a	n/a	0.001038	NP Inter (normality) 1 of 2
pH (s.u.)	HGWC-117	7.54	5.47	8/19/2021		No	60	n/a	n/a	0	n/a	n/a	0.001038	NP Inter (normality) 1 of 2
pH (s.u.)	HGWC-118	7.54	5.47	8/13/2021		No	60	n/a	n/a	0	n/a	n/a	0.001038	NP Inter (normality) 1 of 2
Sulfate (mg/L)	HGWC-101	18.71	n/a	8/16/2021		Yes	54	0.7984	1.08	5.556	None	In(x)	0.0009403	Param Inter 1 of 2
Sulfate (mg/L)	HGWC-102	18.71	n/a	8/13/2021		Yes		0.7984	1.08		None	ln(x)	0.0009403	Param Inter 1 of 2
Sulfate (mg/L)	HGWC-103	18.71	n/a	8/16/2021	354	Yes	54	0.7984	1.08	5.556	None	In(x)	0.0009403	Param Inter 1 of 2
Sulfate (mg/L)	HGWC-105	18.71	n/a	8/13/2021	142	Yes	54	0.7984	1.08	5.556	None	ln(x)	0.0009403	Param Inter 1 of 2
Sulfate (mg/L)	HGWC-107	18.71	n/a	8/13/2021	112	Yes	54	0.7984	1.08	5.556	None	In(x)	0.0009403	Param Inter 1 of 2
Sulfate (mg/L)	HGWC-109	18.71	n/a	8/13/2021	24.4	Yes	54	0.7984	1.08	5.556	None	In(x)	0.0009403	Param Inter 1 of 2
Sulfate (mg/L)	HGWC-117	18.71	n/a	8/19/2021		Yes		0.7984	1.08		None	ln(x)	0.0009403	Param Inter 1 of 2
Sulfate (mg/L)	HGWC-118	18.71	n/a	8/13/2021		Yes		0.7984	1.08		None	In(x)	0.0009403	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	HGWC-101	302.5	n/a	8/16/2021		No		4.997	0.8691	0	None	x^(1/3)	0.0009403	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	HGWC-102	302.5	n/a	8/13/2021		Yes		4.997	0.8691	0	None	x^(1/3)	0.0009403	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	HGWC-103	302.5	n/a	8/16/2021		Yes		4.997	0.8691	0	None	x^(1/3)	0.0009403	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	HGWC-105	302.5	n/a	8/13/2021		Yes		4.997	0.8691	0	None	x^(1/3)	0.0009403	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	HGWC-107	302.5	n/a	8/13/2021		No		4.997	0.8691	0	None	x^(1/3)	0.0009403	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	HGWC-109	302.5	n/a	8/13/2021		No	53	4.997	0.8691	0	None	x^(1/3)	0.0009403	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	HGWC-117	302.5	n/a	8/19/2021		No		4.997	0.8691	0	None	x^(1/3)	0.0009403	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	HGWC-118	302.5	n/a	8/13/2021		Yes		4.997	0.8691	0	None	x^(1/3)	0.0009403	Param Inter 1 of 2

Exceeds Limit: HGWC-101, HGWC-102, HGWC-103, HGWC-105, HGWC-107, HGWC-109, HGWC-117, HGWC-118

Prediction Limit

Background Data Summary (based on cube root transformation) (after Kaplan-Meier Adjustment): Mean=0.2065, Std. Dev=0.03296, n=54, 20.37% NDs. Normality test: Shapiro Francia @alpha = 0.01, calculated = 0.9515, critical = 0.939. Kappa = 1.972 (c=7, w=8, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.009403. Comparing 8 points to limit.

Constituent: Boron Analysis Run 10/13/2021 3:47 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

Sanitas™ v.9.6.31 . UG

Background Data Summary (based on natural log transformation): Mean=1.066, Std. Dev.=0.4274, n=54. Normality test: Shapiro Francia @alpha = 0.01, calculated = 0.9449, critical = 0.939. Kappa = 1.972 (c=7, w=8, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.0009403. Comparing 8 points to limit.

Sanitas™ v.9.6.31 . UG

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 54 background values. Annual per-constituent alpha = 0.01033. Individual comparison alpha = 0.0006486 (1 of 2). Comparing 8 points to limit.

Constituent: Calcium Analysis Run 10/13/2021 3:47 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Hammond AP-4

Sanitas™ v.9.6.31 . UG Hollow symbols indicate censored values. Within Limit

Background Data Summary (after Kaplan-Meier Adjustment): Mean=0.07488, Std. Dev.=0.04656, n=60, 26.67% NDs. Normality test: Shapiro Francia @alpha = 0.01, calculated = 0.9501, critical = 0.945. Kappa = 1.958 (c=7, w=8, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.009403. Comparing 8 points to limit

Sanitas™ v.9.6.31 . UG

Exceeds Limits: HGWC-101, HGWC-102

Prediction Limit Interwell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.01 alpha level. Limits are highest and lowest of 60 background values. Annual perconstituent alpha = 0.01655. Individual comparison alpha = 0.001038 (1 of 2). Comparing 8 points to limit.

Constituent: pH Analysis Run 10/13/2021 3:47 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Hammond AP-4

Sanitas™ v.9.6.31 . UG

Background Data Summary (based on cube root transformation): Mean=4,997, Std. Dev.=0.8691, n=53. Normality test: Shapiro Francia @alpha = 0.01, calculated = 0.9406, critical = 0.938. Kappa = 1.975 (c=7, w=8, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.000403. Comparing 8 points to limit.

Constituent: Total Dissolved Solids Analysis Run 10/13/2021 3:47 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

Sanitas™ v.9.6.31 . UG Hollow symbols indicate censored values

Prediction Limit

Interwell Parametric

Background Data Summary (based on natural log transformation): Mean=0.7984, Std. Dev.=1.08, n=54, 5.556% NDs. Normality test: Shapiro Francia @alpha = 0.01, calculated = 0.9408, critical = 0.939. Kappa = 1.972 (c=7, w=8, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.0009403. Comparing 8 points to limit.

	HGWA-111 (bg)	HGWA-113 (bg)	HGWA-112 (bg)	HGWC-103	HGWC-105	HGWC-107	HGWC-117	HGWC-118	HGWC-109
8/30/2016	<0.04	<0.04	<0.04						
8/31/2016				2.22	1.14	0.651	0.821	0.681	0.402
10/20/2016	0.016 (J)						0.956	0.697	
10/24/2016		0.0226 (J)	0.0367 (J)	1.83					
10/25/2016					1.21	0.778			0.372
1/25/2017	0.0095 (J)	0.009 (J)	0.0075 (J)						
1/27/2017							0.99		
1/31/2017				2.12	1.43	0.782		0.768	0.404
5/23/2017		0.0082 (J)	0.0073 (J)	2.56			0.438	0.754	
5/24/2017	0.0094 (J)				1.3	0.753			0.415
8/10/2017	<0.04	0.0061 (J)	<0.04	2.28	1.28	0.702	0.821	0.608	0.397
11/13/2017	0.0103 (J)		0.0089 (J)						
11/14/2017		0.012 (J)		2.32	1.29	0.78	0.536	0.691	0.366
6/4/2018	0.0065 (J)		0.007 (J)						
6/5/2018		0.0085 (J)							
6/6/2018				2.5	1.4	0.87			0.48
6/7/2018							0.5	0.57	
10/1/2018	0.0054 (J)	0.0042 (J)	<0.04						
10/2/2018					1.2	0.82			0.43
10/3/2018				2.4			0.85	0.51	
4/1/2019	0.0076 (J)								
4/2/2019		0.0059 (J)	0.0043 (J)						
4/3/2019						0.89			0.4
4/4/2019				2.4	1.4 (X)				
4/5/2019							1 (X)	0.6 (X)	
6/17/2019				2.3		0.86			0.37
10/21/2019	0.0097 (J)								
10/22/2019		0.01 (J)	0.016 (J)			0.91	1	0.65	0.32
10/23/2019				2.3	1.3				
1/3/2020									
3/4/2020									
3/24/2020	0.011 (J)		0.012 (J)				1		
3/25/2020				2.3	1.4	0.87		0.7	0.36
4/9/2020		0.012 (J)							
6/18/2020									
7/21/2020									
8/27/2020									
9/18/2020	0.011 (J)		0.008 (J)						
9/22/2020		0.021 (J)							
9/24/2020				2.2	1.2	0.88			
9/25/2020							1.1		0.28
9/28/2020								0.65	
11/10/2020									
11/11/2020									
12/15/2020									
1/19/2021									
3/11/2021	0.01 (J)								
3/12/2021			0.0061 (J)						
3/16/2021		0.011 (J)							
3/17/2021									0.26
3/18/2021				2.4	1.5	0.92		0.81	
3/19/2021							1.5		

Page 2

Prediction Limit

	HGWA-111 (bg)	HGWA-113 (bg)	HGWA-112 (bg)	HGWC-103	HGWC-105	HGWC-107	HGWC-117	HGWC-118	HGWC-109
8/12/2021	<0.04	<0.04	<0.04						
8/13/2021					1.2	0.73		0.59	0.24
8/16/2021				3.2					
8/19/2021							0.78		

	HGWC-101	HGWC-102	HGWA-48D (bg)	HGWA-47 (bg)
30/2016			(-9)	(-3)
	0.0724 (J)			
	0.0877 (J)			
/24/2016	(0)			
/25/2016				
25/2017				
27/2017	0.0000			
	0.0928			
	0.0795			
24/2017				
	0.0814			
/13/2017				
	0.108			
1/2018				
5/2018				
6/2018	0.081			
7/2018				
/1/2018				
/2/2018				
/3/2018	0.092			
1/2019				
2/2019				
3/2019				
	0.06 (X)			
5/2019	` '			
17/2019				
/21/2019				
/22/2019				
	0.1	3.1		
	U. I			
3/2020		3.4		
1/2020		3.7		
24/2020		2.4		
	0.08 (J)			
9/2020				
18/2020		2.9		
21/2020		3		
27/2020		2.7		
18/2020			0.015 (J)	0.0082 (J)
22/2020				
24/2020	0.1	2.9		
25/2020				
28/2020				
/10/2020				0.0064 (J)
/11/2020			0.014 (J)	
/15/2020			0.0083 (J)	<0.04
19/2021				0.015 (J)
			0.012 (J)	0.0067 (J)
			(0)	(0)
	0.13	27		
	0.10	2.1		
19/202 I				
/15/2020		0.13	0.13 2.7	0.0083 (J) 0.015 (J) 0.012 (J)

	HGWC-101	HGWC-102	HGWA-48D (bg)	HGWA-47 (bg)
8/12/2021			0.012 (J)	<0.04
8/13/2021		2.4		
8/16/2021	0.13			
8/19/2021				

	HGWA-111 (bg)	HGWA-112 (bg)	HGWA-113 (bg)	HGWC-118	HGWC-101	HGWC-103	HGWC-109	HGWC-107	HGWC-117
0/2016	40.3	6.69	6.72						
1/2016				79.3	19.4	70.4	35.1	44.7	63.4
20/2016	38.7			83.7	19.3				64.4
24/2016		6.25	6.4			70.9			
25/2016							35.4	49	
5/2017	44.6	6.58	6.87						
7/2017									68.6
31/2017				76.8	19.1	63.6	34.2	46.6	
3/2017		6.4	7.13	77.2	18.3	111			32
4/2017	34.8						35.3	49.5	
0/2017	48.6	6.54	6.71	83.1	20.9	81.2	43.1	54.2	78.9
13/2017	17.1	6.26							
14/2017			7.4	86.7	21.7	79.7	37.4	53.2	46.9
/2018	30.1	7.4							
/2018			7.4						
5/2018					17	88.3	41.1	55	
//2018				79.7					37.7
1/2018	14.2 (J)	5.8	6.2						
/2/2018							42.5	55.4	
/3/2018				77.1	19.1 (J)	85.3			68
/2019	58.4								
2/2019		6.7	7.4						
/2019							37.5	54	
/2019					16.9	91.9			
5/2019				82					70
7/2019				70.5		92.6		55.3	20.0
8/2019				76.5					36.3
/21/2019	51		7.0	04.0			40.0	FO 1	70.0
/22/2019		6.3	7.2	84.2	21.0	00.5	42.6	58.1	70.9
/23/2019					21.9	86.5			
/2020									
/2020	61.0	7							60
4/2020	61.2	7		06.0	10.4	96.9	42.6	E0 E	68
25/2020 1/2020			8.3	86.8	18.4	86.8	42.6	59.5	
8/2020			0.3						
1/2020									
7/2020									
8/2020	32.2	6.5							
2/2020	32.2	0.5	7.9						
4/2020			7.9		20.3	91.3		55.4	
5/2020					20.3	91.5	48.5	33.4	72.8
8/2020				88.9			40.5		72.0
10/2020				00.3					
11/2020									
15/2020									
9/2021									
1/2021	53.2								
2/2021	3 0.2	6.9							
6/2021			8.6						
7/2021			20 2		21.8		37.3		
8/2021				85.4	-	83.7		56	
				-				-	

	HGWA-111 (bg)	HGWA-112 (bg)	HGWA-113 (bg)	HGWC-118	HGWC-101	HGWC-103	HGWC-109	HGWC-107	HGWC-117
3/19/2021									87.3
8/12/2021	45.4	6.9	8.4						
8/13/2021				84.3			43.5	57.8	
8/16/2021					22.8	124			
8/19/2021									40.9

			Fiantiian	illiona Client. Southern Company Data.	Hammond Ar-4	
	HGWC-105	HGWC-102	HGWA-47 (bg)	HGWA-48D (bg)		
8/30/2016						
8/31/2016	74.2					
10/20/2016						
10/24/2016						
10/25/2016	72.5					
1/25/2017	72.0					
1/27/2017						
	70.2					
1/31/2017	70.3					
5/23/2017						
5/24/2017	75.9					
8/10/2017	84					
11/13/2017						
11/14/2017	87.2					
6/4/2018						
6/5/2018						
6/6/2018	81					
6/7/2018						
10/1/2018						
10/2/2018	84.7					
10/3/2018						
4/1/2019						
4/2/2019						
4/3/2019						
4/4/2019	73.8					
4/5/2019						
6/17/2019	81.2					
6/18/2019						
10/21/2019						
10/22/2019						
10/23/2019	89.4	136				
1/3/2020		118				
3/4/2020		144				
3/24/2020		103				
3/25/2020	91.4					
4/9/2020						
6/18/2020		124				
7/21/2020		120				
8/27/2020		106				
9/18/2020			62.2	51.8		
9/22/2020						
9/24/2020	92.9	120				
9/25/2020	32.3	120				
9/28/2020						
11/10/2020			73.3			
11/11/2020			73.3	61 3		
			72.5	61.3 61.3		
12/15/2020						
1/19/2021			72.5	58.9		
3/11/2021			60.2	E7 E		
3/12/2021			69.2	57.5		
3/16/2021						
3/17/2021	07.7	111				
3/18/2021	97.7					

	HGWC-105	HGWC-102	HGWA-47 (bg)	HGWA-48D (bg)
3/19/2021				
8/12/2021			71.2 (M1)	59.5
8/13/2021	102	119		
8/16/2021				
8/19/2021				

	HGWA-111 (bg)	HGWA-113 (bg)	HGWA-112 (bg)	HGWC-103	HGWC-105	HGWC-107	HGWC-109	HGWC-117	HGWC-101
8/30/2016	3.3	2	5.4						
8/31/2016				5.2	3	3.2	5	7.1	5.7
10/20/2016	3.2							7.7	5.7
10/24/2016		1.9	5.2	5.2					
10/25/2016					2.8	3.2	4.8		
1/25/2017	2.7	1.9	5						
1/27/2017								7.8	
1/31/2017				5.6	3.3	3.1	5.5		5.8
5/23/2017		1.6	5.1	5.7				3.6	5.3
5/24/2017	3				3.5	2.9	5.3		
8/10/2017	2.8	1.7	5.2	5.8	2.9	2.8	4.6	5.9	5.4
11/13/2017	2.5		5.5						
11/14/2017		2		6	4	3.4	5.6	4	5.8
6/4/2018	2.6		5.3						
6/5/2018		1.7							
6/6/2018				6.4	2.9	2.8	5.3		5.3
6/7/2018								3.6	
10/1/2018	2.2	1.6	5.6						
10/2/2018					3.5	3.2	5.3		
10/3/2018				6.3				7.6	5.8
4/1/2019	4								
4/2/2019		1.8	5.7						
4/3/2019						3.6	5		
4/4/2019				6.9	3.9				5.9
4/5/2019								8.9	
6/17/2019				5.2		2.9		0.0	
10/21/2019	3.9			0.2		2.0			
10/22/2019	0.0	1.9	5.5			3.6	4.6	12.1	
10/23/2019		1.5	0.0	6.1	3.6	0.0	4.0	12.1	5.5
1/3/2020				0.1	0.0				0.0
3/4/2020									
3/24/2020	3.6		5.2					12.5	
3/25/2020	3.0		5.2	5.1	3.2	3	3.9	12.5	5.2
4/9/2020		1.4		5.1	3.2	3	5.5		J.Z
6/18/2020		1.4							
7/21/2020									
8/27/2020									
9/18/2020	2.6		F 2						
	2.6	1.5	5.2						
9/22/2020		1.5		6	2.0	2.5			E
9/24/2020				6	3.9	3.5	4.4	10.1	5.5
9/25/2020							4.1	16.1	
9/28/2020									
11/10/2020									
11/11/2020									
12/15/2020									
1/19/2021	2.4								
3/11/2021	3.4		5.0						
3/12/2021		1.0	5.3						
3/16/2021		1.6					4.7		
3/17/2021							4.7		5.5
3/18/2021				6.2	4.3	3.2		04.0	
3/19/2021								24.9	

Page 2

Prediction Limit

	HGWA-111 (bg)	HGWA-113 (bg)	HGWA-112 (bg)	HGWC-103	HGWC-105	HGWC-107	HGWC-109	HGWC-117	HGWC-101
8/12/2021	2.5	1.5	4.4						
8/13/2021					3.7	3.1	4		
8/16/2021				10.4					5.4
8/19/2021								4	

	HGWC-118	HGWC-102	HGWA-48D (bg)	HGWA-47 (bg)
8/30/2016	710110-110	110440-102	HOWA-TOD (Dg)	/ GV/A-T/ (by)
8/31/2016	4.5			
10/20/2016	4.4			
10/24/2016	4.4			
10/25/2016				
1/25/2017				
1/27/2017				
1/31/2017	4.8			
5/23/2017	4.3			
5/24/2017				
8/10/2017	4.2			
11/13/2017				
11/14/2017	4.4			
6/4/2018				
6/5/2018				
6/6/2018				
6/7/2018	4.1			
10/1/2018				
10/2/2018				
10/3/2018	4.4			
4/1/2019				
4/2/2019				
4/3/2019				
4/4/2019				
4/5/2019	4.3			
6/17/2019	4.5			
10/21/2019				
	4.5			
10/22/2019	4.5			
10/23/2019		7.9		
1/3/2020		7		
3/4/2020		7.1		
3/24/2020		6.5		
3/25/2020	3.6			
4/9/2020				
6/18/2020		6.9		
7/21/2020		7.2		
8/27/2020		7.1		
9/18/2020			2.6	2.7
9/22/2020				
9/24/2020		7.2		
9/25/2020				
9/28/2020	4			
11/10/2020				2.7
			2.6	
11/11/2020			2.7	2.9
11/11/2020			4.1	
12/15/2020				
12/15/2020 1/19/2021			2.7	2.8
12/15/2020 1/19/2021 3/11/2021			2.7	
12/15/2020 1/19/2021 3/11/2021 3/12/2021				2.8
12/15/2020 1/19/2021 3/11/2021 3/12/2021 3/16/2021			2.7	
12/15/2020 1/19/2021 3/11/2021 3/12/2021 3/16/2021 3/17/2021		6.9	2.7	
12/15/2020 1/19/2021 3/11/2021 3/12/2021 3/16/2021	4.3	6.9	2.7	

	HGWC-118	HGWC-102	HGWA-48D (bg)	HGWA-47 (bg)
8/12/2021			2.2	2.3
8/13/2021	4	6		
8/16/2021				
8/19/2021				

	HGWA-111 (bg)	HGWA-113 (bg)	HGWA-112 (bg)	HGWC-103	HGWC-105	HGWC-107	HGWC-109	HGWC-117	HGWC-118
8/30/2016	0.07 (J)	0.2 (J)	0.04 (J)	0.06 (1)	0.15 (1)	0.08 (1)	0.12 (1)	0.00 (1)	0.19 (1)
8/31/2016	0.07 (1)			0.06 (J)	0.15 (J)	0.08 (J)	0.12 (J)	0.09 (J)	0.18 (J)
10/20/2016 10/24/2016	0.07 (J)	0.16 (1)	0.05 (J)	0.12 (1)				0.11 (J)	0.12 (J)
10/24/2016		0.16 (J)	0.05 (3)	0.13 (J)	0.00 (1)	0.16 (1)	0.17 (1)		
1/25/2017	0.14 (J)	0.15 (J)	<0.1		0.09 (J)	0.16 (J)	0.17 (J)		
1/27/2017	0.14 (3)	0.13 (0)	30.1					0.28 (J)	
1/31/2017				<0.1	0.13 (J)	0.16 (J)	0.05 (J)	0.20 (0)	0.3
5/23/2017		0.18 (J)	0.004 (J)	0.15 (J)	0.10 (0)	0.10 (0)	0.00 (0)	0.01 (J)	0.14 (J)
5/24/2017	0.02 (J)	0.10 (0)	0.004 (0)	0.10 (0)	0.07 (J)	0.009 (J)	0.13 (J)	0.01 (0)	0.14 (0)
8/10/2017	0.06 (J)	0.19 (J)	0.03 (J)	<0.1	0.03 (J)	<0.1	0.12 (J)	0.1 (J)	0.11 (J)
11/13/2017	<0.1	(5)	<0.1		(0)		(-)	(0)	(0)
11/14/2017		0.16 (J)		<0.1	<0.1	<0.1	<0.1	<0.1	0.07 (J)
6/4/2018	0.032 (J)	()	<0.1						()
6/5/2018	. ,	0.18 (J)							
6/6/2018		()		<0.1	0.074 (J)	0.057 (J)	0.15 (J)		
6/7/2018					.,	. ,	.,	<0.1	0.3
10/1/2018	<0.1	0.078 (J)	<0.1						
10/2/2018		, ,			<0.1	<0.1	<0.1		
10/3/2018				<0.1				<0.1	0.12 (J)
4/1/2019	0.042 (J)								
4/2/2019		0.18 (J)	<0.1						
4/3/2019						<0.1	0.05 (J)		
4/4/2019				0.042 (J)	0.03 (J)				
4/5/2019								0.19 (J)	0.33
6/18/2019									0.89
8/21/2019	0.048 (J)	0.11 (J)	<0.1						
8/22/2019				<0.1	<0.1			<0.1	0.07 (J)
8/23/2019						<0.1	0.034 (J)		
10/21/2019	0.12 (J)								
10/22/2019		0.18 (J)	0.05 (J)			0.047 (J)	0.099 (J)	0.042 (J)	0.087 (J)
10/23/2019				<0.1	<0.1				
1/3/2020									
3/4/2020									
3/24/2020	0.076 (J)		<0.1					<0.1	
3/25/2020				<0.1	<0.1	<0.1	0.075 (J)		0.078 (J)
4/9/2020		0.14 (J)							
6/18/2020									
7/21/2020									
8/25/2020	0.052 (J)	0.17	<0.1						
8/26/2020									0.072 (J)
8/27/2020				<0.1	<0.1	<0.1	0.094 (J)	<0.1	
9/18/2020	<0.1		<0.1						
9/22/2020		0.16							
9/24/2020				<0.1	<0.1	0.064 (J)			
9/25/2020							0.091 (J)	<0.1	
9/28/2020									0.078 (J)
11/10/2020									
11/11/2020									
12/15/2020									
1/19/2021	0.057.45								
3/11/2021	0.057 (J)								

	HGWA-111 (bg)	HGWA-113 (bg)	HGWA-112 (bg)	HGWC-103	HGWC-105	HGWC-107	HGWC-109	HGWC-117	HGWC-118
3/12/2021			<0.1						
3/16/2021		0.18							
3/17/2021							0.089 (J)		
3/18/2021				<0.1	<0.1	<0.1			0.079 (J)
3/19/2021								<0.1	
8/12/2021	<0.1	0.16	<0.1						
8/13/2021					<0.1	<0.1	0.086 (J)		0.075 (J)
8/16/2021				<0.1					
8/19/2021								<0.1	

	HGWC-101	HGWC-102	HGWA-47 (bg)	HGWA-48D (bg)
8/30/2016				
8/31/2016	0.05 (J)			
10/20/2016	0.03 (J)			
10/24/2016				
10/25/2016				
1/25/2017				
1/27/2017				
1/31/2017	<0.1			
5/23/2017	<0.1			
5/24/2017				
8/10/2017	<0.1			
11/13/2017	-U. I			
11/13/2017	<0.1			
	~ 0.1			
6/4/2018				
6/5/2018				
6/6/2018	<0.1			
6/7/2018				
10/1/2018				
10/2/2018				
10/3/2018	<0.1			
4/1/2019				
4/2/2019				
4/3/2019				
4/4/2019	<0.1			
4/5/2019				
6/18/2019				
8/21/2019				
8/22/2019	<0.1			
8/23/2019				
10/21/2019				
10/22/2019				
10/23/2019	<0.1	0.22 (J)		
1/3/2020		<0.1		
3/4/2020		<0.1		
3/24/2020		<0.1		
	-0.1	~ 0. i		
3/25/2020	<0.1			
4/9/2020		-0.4		
6/18/2020		<0.1		
7/21/2020		<0.1		
8/25/2020				
8/26/2020				
8/27/2020	<0.1	<0.1		
9/18/2020			0.067 (J)	0.098 (J)
9/22/2020				
9/24/2020	<0.1	<0.1		
9/25/2020				
9/28/2020				
11/10/2020			0.065 (J)	
11/11/2020			.,	0.083 (J)
12/15/2020			0.064 (J)	0.081 (J)
1/19/2021			0.057 (J)	0.079 (J)
3/11/2021			3.33. (0)	0.0.0 (0)
J UZ 1				

	HGWC-101	HGWC-102	HGWA-47 (bg)	HGWA-48D (bg)
3/12/2021			0.062 (J)	0.085 (J)
3/16/2021				
3/17/2021	<0.1	<0.1		
3/18/2021				
3/19/2021				
8/12/2021			<0.1	0.064 (J)
8/13/2021		<0.1		
8/16/2021	<0.1			
8/19/2021				

	HGWA-111 (bg)	HGWA-113 (bg)	HGWA-112 (bg)	HGWC-103	HGWC-105	HGWC-107	HGWC-117	HGWC-118	HGWC-109
8/30/2016	6.89	5.99	5.77						
8/31/2016				5.54	6.5	6.11	6.07	7.03	6.78
10/20/2016	6.73						6	7.01	
10/24/2016		5.84	5.61	5.48					
10/25/2016					6.34	6.04			6.55
1/25/2017	7.02	6.04	5.68						
1/27/2017							6.2		
1/31/2017				5.51	6.43	5.94		6.96	6.5
5/23/2017		6.01	5.7	5.98			5.27	6.92	
5/24/2017	6.44				6.31	6.06			6.42
8/10/2017	6.79	5.98	5.59	5.63	6.45	6.06	6.27	6.99	6.63
11/13/2017	5.94		5.56						
11/14/2017		6.16		5.59	6.53	5.99	5.4	6.9	6.5
6/4/2018	6.12		5.62						
6/5/2018		5.86							
6/6/2018				5.49	6.49	6			6.59
6/7/2018							5.29	7.03	
10/1/2018	5.92	5.94	5.62						
10/2/2018					6.18	6.18			6.54
10/3/2018				5.53	0.10	0.10	6.08	7.08	0.01
4/1/2019	7.09			0.00			0.00	7.00	
4/2/2019	7.00	6	5.47						
4/3/2019		ŭ	0.47			6.06			6.42
4/4/2019				5.44	6.17	0.00			0.42
4/5/2019				3.44	0.17		5.99	6.96	
6/17/2019				5.53			3.99	0.90	
6/18/2019				5.55					
8/21/2019	6.6	6.05	5.8						
	6.6	0.05	5.6	E E E	6.04		E E2	6.02	
8/22/2019				5.55	6.04	6.26	5.53	6.93	6.76
8/23/2019	7.00					6.26			6.76
10/21/2019	7.02	F 00	F 7			0.10	0.47	7.00	0.50
10/22/2019		5.98	5.7	5.40	0.40	6.19	6.17	7.03	6.58
10/23/2019				5.49	6.46				
1/3/2020									
3/4/2020									
3/24/2020	7.37		5.64				5.99		
3/25/2020				5.49	6.47	6.13		6.89	6.56
4/9/2020		6.08							
6/18/2020									
7/21/2020									
8/25/2020	6.7	5.95	5.53						
8/26/2020								6.97	
8/27/2020				5.82	6.45	6.09	5.92		6.64
9/18/2020	6.46		5.58						
9/22/2020		6.1							
9/24/2020				5.6	6.63	6.11			
9/25/2020							6.01		6.79
9/28/2020								7.03	
11/10/2020									
11/11/2020									
12/15/2020									
1/19/2021									

	HGWA-111 (bg)	HGWA-113 (bg)	HGWA-112 (bg)	HGWC-103	HGWC-105	HGWC-107	HGWC-117	HGWC-118	HGWC-109
3/11/2021	7.2								
3/12/2021			5.6						
3/16/2021		6.14							
3/17/2021									6.55
3/18/2021				5.51	6.57	6.2		7.11	
3/19/2021							6.14		
8/12/2021	6.67	6.08	5.5						
8/13/2021					6.44	6.11		6.78	6.71
8/16/2021				5.59					
8/19/2021							6.04		

	HGWC-101	HGWC-102	HGWA-48D (bg)	HGWA-47 (bg)
8/30/2016				
8/31/2016	5.35			
10/20/2016	5.3			
10/24/2016				
10/25/2016				
1/25/2017				
1/27/2017				
1/31/2017	5.24			
5/23/2017	5.39			
5/24/2017				
8/10/2017	5.47			
11/13/2017				
11/14/2017	5.4			
6/4/2018				
6/5/2018				
6/6/2018	5.37			
6/7/2018				
10/1/2018				
10/2/2018				
10/3/2018	5.39			
4/1/2019				
4/2/2019				
4/3/2019				
4/4/2019	5.31			
4/5/2019				
6/17/2019				
6/18/2019	5.3			
8/21/2019				
8/22/2019	5.39			
8/23/2019				
10/21/2019				
10/22/2019				
10/23/2019	5.33	5.68		
1/3/2020		5.64		
3/4/2020		5.75		
3/24/2020		5.58		
3/25/2020	5.53			
4/9/2020				
6/18/2020		5.67		
7/21/2020		5.72		
8/25/2020				
8/26/2020	5.00			
8/27/2020	5.32	5.7	7.5	
9/18/2020			7.5	7.54
9/22/2020	F 40	F 00		
9/24/2020	5.48	5.82		
9/25/2020				
9/28/2020				724
11/10/2020			7.4	7.34
11/11/2020			7.4	7.07
12/15/2020			7.39	7.27
1/19/2021			7.4	7.32

	HGWC-101	HGWC-102	HGWA-48D (bg)	HGWA-47 (bg)
3/11/2021				
3/12/2021			7.51	7.52
3/16/2021				
3/17/2021	5.41	5.78		
3/18/2021				
3/19/2021				
8/12/2021			7.44	7.38
8/13/2021		5.45		
8/16/2021	5.4			
8/19/2021				

	HGWA-111 (bg)	HGWA-112 (bg)	HGWA-113 (bg)	HGWC-118	HGWC-101	HGWC-103	HGWC-109	HGWC-107	HGWC-117
8/30/2016	1.6	0.63 (J)	14						
8/31/2016				88	110	280	36	130	150
10/20/2016	1.6			81	110				150
10/24/2016		0.62 (J)	11			280			
10/25/2016							41	130	
1/25/2017	1.6	0.62 (J)	12						
1/27/2017									150
1/31/2017				87	120	300	37	130	
5/23/2017		0.55 (J)	12	84	97	340			110
5/24/2017	1.4						40	130	
8/10/2017	1.6	0.66 (J)	11	78	96	300	40	130	140
11/13/2017	1.3	0.61 (J)							
11/14/2017			11	79	110	310	40	130	110
6/4/2018	1.4	0.73 (J)							
6/5/2018		. ,	9.9						
6/6/2018					95.5	351	49.7	132	
6/7/2018				60.1					103
10/1/2018	1	0.52 (J)	6.7						
10/2/2018		0.02 (0)	0.7				42.3	132	
10/3/2018				91.5	121	381	42.0	102	169
4/1/2019	1.7			01.0	121	001			100
4/2/2019	1.7	0.78 (J)	8.7						
4/3/2019		0.78 (3)	6.7				36	139	
					95.1	250	30	139	
4/4/2019				75 1	95.1	358			141
4/5/2019				75.1		044	00.0	100	141
6/17/2019					100	311	30.9	126	440
6/18/2019				77	102				116
10/21/2019	1.8								
10/22/2019		0.6 (J)	6.8	80.9			23.2	123	133
10/23/2019					101	248			
1/3/2020									
3/4/2020									
3/24/2020	1.6	<1							129
3/25/2020				78.4	85.5	251	27.9	116	
4/9/2020			6.6						
6/18/2020									
7/21/2020									
8/27/2020									
9/18/2020	1	<1							
9/22/2020			5.3						
9/24/2020					97	293		126	
9/25/2020							24.7		146
9/28/2020				86					
11/10/2020									
11/11/2020									
12/15/2020									
1/19/2021									
3/11/2021	1.5								
3/12/2021		0.52 (J)							
3/16/2021			7.7						
3/17/2021					107		28.3		
3/18/2021				87.8		286		128	

	HGWA-111 (bg)	HGWA-112 (bg)	HGWA-113 (bg)	HGWC-118	HGWC-101	HGWC-103	HGWC-109	HGWC-107	HGWC-117
3/19/2021									162
8/12/2021	1.3	<1	10						
8/13/2021				75.1			24.4	112	
8/16/2021					72.1	354			
8/19/2021									108

	HGWC-105	HGWC-102	HGWA-48D (bg)	HGWA-47 (bg)
8/30/2016				
8/31/2016	190			
10/20/2016				
10/24/2016				
10/25/2016	190			
1/25/2017				
1/27/2017				
1/31/2017	210			
5/23/2017				
5/24/2017	180			
8/10/2017	180			
11/13/2017				
11/14/2017	170			
	170			
6/4/2018				
6/5/2018				
6/6/2018	168			
6/7/2018				
10/1/2018				
10/2/2018	173			
10/3/2018				
4/1/2019				
4/2/2019				
4/3/2019				
4/4/2019	185			
4/5/2019				
6/17/2019	162			
6/18/2019				
10/21/2019				
10/22/2019				
10/22/2019	162	<1		
	102			
1/3/2020		380		
3/4/2020		400		
3/24/2020		311		
3/25/2020	161			
4/9/2020				
6/18/2020		349		
7/21/2020		378		
8/27/2020		382		
9/18/2020			9.5	3.5
9/22/2020				
9/24/2020	177	370		
9/25/2020				
9/28/2020				
11/10/2020				2.3
11/11/2020			4.5	-
12/15/2020			4.2	2.4
1/19/2021			3.9	2.4
			3.8	۷.0
3/11/2021			4.7	1.0
3/12/2021			4.7	1.9
3/16/2021				
3/17/2021		332		
3/18/2021	196			

	HGWC-105	HGWC-102	HGWA-48D (bg)	HGWA-47 (bg)
3/19/2021				
8/12/2021			4.3	1.4
8/13/2021	142	248		
8/16/2021				
8/19/2021				

	HGWA-111 (bg)	HGWA-113 (bg)	HGWA-112 (bg)	HGWC-101	HGWC-103	HGWC-105	HGWC-107	HGWC-109	HGWC-118
8/30/2016	172	77	76						
8/31/2016				278	483	389	235	182	373
10/20/2016	108			165					305
10/24/2016		111	65		517				
10/25/2016						316	223	172	
1/25/2017	345	155	152 (o)						
1/27/2017									
1/31/2017				263	516	437	346	252	361
5/23/2017		74	52	190	637				359
5/24/2017	126					352	234	184	
8/10/2017	174	94	60	175	459	356	254	208	325
11/13/2017	158		75						
11/14/2017		89		253	545	375	313	252	373
6/4/2018	131		70						
6/5/2018		92							
6/6/2018				188	559	385	278	224	
6/7/2018									338
10/1/2018	101	91	76						
10/2/2018						374	274	230	
10/3/2018				238	582				328
4/1/2019	213								
4/2/2019		94	69						
4/3/2019							273	210	
4/4/2019				149	535	340			
4/5/2019									308
6/17/2019					515	370	272		
6/18/2019					0.0	0.0			215
10/21/2019	187								
10/22/2019	,	95	81				308	212	354
10/23/2019			0.	221	507	419	000		33.
1/3/2020									
3/4/2020									
3/24/2020	207		52						
3/25/2020	207		02	187	507	417	297	213	347
4/9/2020		48		107	007	417	207	210	047
6/18/2020		40							
7/21/2020									
8/27/2020									
9/18/2020	139		62						
9/22/2020	155	84	02						
9/24/2020		04		170	517	411	253		
9/25/2020				170	517	411	200	188	
								100	332
9/28/2020									332
11/10/2020									
11/11/2020									
12/15/2020									
1/19/2021	207								
3/11/2021	207		FC						
3/12/2021		00	56						
3/16/2021		99		040				474	
3/17/2021				213	405	440	055	171	222
3/18/2021					465	410	255		328

	HGWA-111 (bg)	HGWA-113 (bg)	HGWA-112 (bg)	HGWC-101	HGWC-103	HGWC-105	HGWC-107	HGWC-109	HGWC-118
3/19/2021									
8/12/2021	157	92	63						
8/13/2021						441	291	189	336
8/16/2021				206	672				
8/19/2021									

	HGWC-117	HGWC-102	HGWA-47 (bg)	HGWA-48D (bg)
8/30/2016				
8/31/2016	381			
10/20/2016	319			
10/24/2016				
10/25/2016				
1/25/2017				
1/27/2017	407			
1/31/2017				
5/23/2017	258			
5/24/2017	200			
	359			
8/10/2017	ააყ			
11/13/2017	210			
11/14/2017	310			
6/4/2018				
6/5/2018				
6/6/2018				
6/7/2018	223			
10/1/2018				
10/2/2018				
10/3/2018	337			
4/1/2019				
4/2/2019				
4/3/2019				
4/4/2019				
4/5/2019	334			
6/17/2019				
6/18/2019	254			
10/21/2019				
10/21/2019	348			
	340	726		
10/23/2019		736		
1/3/2020		714		
3/4/2020		764		
3/24/2020	331	521		
3/25/2020				
4/9/2020				
6/18/2020		652		
7/21/2020		669		
8/27/2020		663		
9/18/2020			195	224
9/22/2020				
9/24/2020		696		
9/25/2020	340			
9/28/2020				
11/10/2020			229	
11/11/2020				221
12/15/2020			233	239
1/19/2021			199	224
			133	22 4
3/11/2021			047	204
3/12/2021			217	204
3/16/2021				
3/17/2021		626		
3/18/2021				

	HGWC-117	HGWC-102	HGWA-47 (bg)	HGWA-48D (bg)
3/19/2021	371			
8/12/2021			212	234
8/13/2021		647		
8/16/2021				
8/19/2021	253			

FIGURE E.

Appendix III Interwell Trend Test Summary - Significant Results Plant Hammond Client: Southern Company Data: Hammond AP-4 Printed 10/13/2021, 4:04 PM

	Plant Hammond	Client: Southern Company		Data: Hammond AP-4		Printed 10/13/2021, 4:04 PM					
Constituent	Well	Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Boron (mg/L)	HGWC-107	0.03493	54	53	Yes	15	0	n/a	n/a	0.01	NP
Boron (mg/L)	HGWC-109	-0.03174	-59	-53	Yes	15	0	n/a	n/a	0.01	NP
Calcium (mg/L)	HGWA-113 (bg)	0.3831	56	48	Yes	14	0	n/a	n/a	0.01	NP
Calcium (mg/L)	HGWC-105	5.461	75	53	Yes	15	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	HGWA-113 (bg)	-1.511	-57	-48	Yes	14	0	n/a	n/a	0.01	NP

Appendix III Interwell Trend Test Summary - All Results

	Plant Hammond	Client: Southern Company		Data: Hammond AP-4		Printed 10/13/2021, 4:04 PM					
Constituent	Well	Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Boron (mg/L)	HGWA-111 (bg)	0	-1	-48	No	14	21.43	n/a	n/a	0.01	NP
Boron (mg/L)	HGWA-112 (bg)	-0.0006186	-19	-48	No	14	28.57	n/a	n/a	0.01	NP
Boron (mg/L)	HGWA-113 (bg)	0.0002897	5	48	No	14	14.29	n/a	n/a	0.01	NP
Boron (mg/L)	HGWA-47 (bg)	0.008902	4	14	No	6	33.33	n/a	n/a	0.01	NP
Boron (mg/L)	HGWA-48D (bg)	-0.003338	-5	-14	No	6	0	n/a	n/a	0.01	NP
Boron (mg/L)	HGWC-101	0.008189	35	48	No	14	0	n/a	n/a	0.01	NP
Boron (mg/L)	HGWC-102	-0.4582	-22	-30	No	10	0	n/a	n/a	0.01	NP
Boron (mg/L)	HGWC-103	0.05703	27	53	No	15	0	n/a	n/a	0.01	NP
Boron (mg/L)	HGWC-105	0.01211	12	48	No	14	0	n/a	n/a	0.01	NP
Boron (mg/L)	HGWC-107	0.03493	54	53	Yes	15	0	n/a	n/a	0.01	NP
Boron (mg/L)	HGWC-109	-0.03174	-59	-53	Yes	15	0	n/a	n/a	0.01	NP
Boron (mg/L)	HGWC-117	0.06827	35	48	No	14	0	n/a	n/a	0.01	NP
Boron (mg/L)	HGWC-118	-0.009865	-12	-48	No	14	0	n/a	n/a	0.01	NP
Calcium (mg/L)	HGWA-111 (bg)	2.338	17	48	No	14	0	n/a	n/a	0.01	NP
Calcium (mg/L)	HGWA-112 (bg)	0.07036	20	48	No	14	0	n/a	n/a	0.01	NP
Calcium (mg/L)	HGWA-113 (bg)	0.3831	56	48	Yes	14	0	n/a	n/a	0.01	NP
Calcium (mg/L)	HGWA-47 (bg)	-1.977	-2	-14	No	6	0	n/a	n/a	0.01	NP
Calcium (mg/L)	HGWA-48D (bg)	0	0	14	No	6	0	n/a	n/a	0.01	NP
Calcium (mg/L)	HGWC-102	-13.74	-12	-30	No	10	0	n/a	n/a	0.01	NP
Calcium (mg/L)	HGWC-103	4.868	47	53	No	15	0	n/a	n/a	0.01	NP
Calcium (mg/L)	HGWC-105	5.461	75	53	Yes	15	0	n/a	n/a	0.01	NP
Calcium (mg/L)	HGWC-118	1.341	37	53	No	15	0	n/a	n/a	0.01	NP
Chloride (mg/L)	HGWA-111 (bg)	-0.07374	-11	-48	No	14	0	n/a	n/a	0.01	NP
Chloride (mg/L)	HGWA-112 (bg)	0	3	48	No	14	0	n/a	n/a	0.01	NP
Chloride (mg/L)	HGWA-113 (bg)	-0.08329	-44	-48	No	14	0	n/a	n/a	0.01	NP
Chloride (mg/L)	HGWA-47 (bg)	-0.4451	-4	-14	No	6	0	n/a	n/a	0.01	NP
Chloride (mg/L)	HGWA-48D (bg)	0	-3	-14	No	6	0	n/a	n/a	0.01	NP
Chloride (mg/L)	HGWC-103	0.339	43	53	No	15	0	n/a	n/a	0.01	NP
pH (s.u.)	HGWA-111 (bg)	0.0425	9	58	No	16	0	n/a	n/a	0.01	NP
pH (s.u.)	HGWA-112 (bg)	-0.02404	-36	-58	No	16	0	n/a	n/a	0.01	NP
pH (s.u.)	HGWA-113 (bg)	0.02701	38	58	No	16	0	n/a	n/a	0.01	NP
pH (s.u.)	HGWA-47 (bg)	-0.04171	-1	-14	No	6	0	n/a	n/a	0.01	NP
pH (s.u.)	HGWA-48D (bg)	0.02086	2	14	No	6	0	n/a	n/a	0.01	NP
pH (s.u.)	HGWC-101	0.01297	35	63	No	17	0	n/a	n/a	0.01	NP
pH (s.u.)	HGWC-102	0.06557	7	30	No	10	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	HGWA-111 (bg)	-0.02369	-18	-48	No	14	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	HGWA-112 (bg)	-0.02426	-40	-48	No	14	21.43	n/a	n/a	0.01	NP
Sulfate (mg/L)	HGWA-113 (bg)	-1.511	-57	-48	Yes	14	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	HGWA-47 (bg)	-2.098	-9	-14	No	6	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	HGWA-48D (bg)	-3.129	-5	-14	No	6	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	HGWC-101	-4.001	-39	-53	No	15	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	HGWC-102	-22.81	-5	-30	No	10	10	n/a	n/a	0.01	NP
Sulfate (mg/L)	HGWC-103	3.195	11	53	No	15	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	HGWC-105	-7.471	-48	-53	No	15	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	HGWC-107	-1.198	-36	-53	No	15	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	HGWC-109	-3.066	-49	-53	No	15	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	HGWC-117	-1.092	-13	-53	No	15	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	HGWC-118	-0.8812	-18	-53	No	15	0	n/a	n/a	0.01	NP
Total Dissolved Solids (mg/L)	HGWA-111 (bg)	4.854	10	48	No	14	0	n/a	n/a	0.01	NP
Total Dissolved Solids (mg/L)	HGWA-112 (bg)	-1.162	-10	-43	No	13	0	n/a	n/a	0.01	NP
Total Dissolved Solids (mg/L)	HGWA-113 (bg)	0	-1	-48	No	14	0	n/a	n/a	0.01	NP
Total Dissolved Solids (mg/L)	HGWA-47 (bg)	11.87	1	14	No	6	0	n/a	n/a	0.01	NP
Total Dissolved Solids (mg/L)	HGWA-48D (bg)	0	0	14	No	6	0	n/a	n/a	0.01	NP
Total Dissolved Solids (mg/L)	HGWC-102	-55.37	-17	-30	No	10	0	n/a	n/a	0.01	NP
Total Dissolved Solids (mg/L)	HGWC-103	0	-1	-53	No	15	0	n/a	n/a	0.01	NP

Appendix III Interwell Trend Test Summary - All Results

Plant Hammond Client: Southern Company Data: Hammond AP-4 Printed 10/13/2021, 4:04 PM Constituent Well Slope Calc. Critical Sig. <u>N</u> %NDs Normality Xform Method <u>Alpha</u> Total Dissolved Solids (mg/L) HGWC-105 15.72 35 53 No 15 0 n/a n/a 0.01 Total Dissolved Solids (mg/L) HGWC-118 -6.518 -23 -53 No 15 0 0.01 n/a n/a NP

Page 2

Constituent: Boron Analysis Run 10/13/2021 3:58 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Hammond AP-4

Constituent: Boron Analysis Run 10/13/2021 3:58 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Hammond AP-4

Constituent: Boron Analysis Run 10/13/2021 3:58 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Hammond AP-4

Constituent: Boron Analysis Run 10/13/2021 3:58 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

Sanitas™ v.9.6.31 . UG Sanitas™ v.9.6.31 . UG

Constituent: Boron Analysis Run 10/13/2021 3:58 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Hammond AP-4

Sen's Slope Estimator HGWC-102 Slope = -0.4582 units per year. Mann-Kendall 3.2 statistic = -22 critical = -30 Trend not sig-nificant at 99% confidence level 2.4 (α = 0.005 per tail). 1.6 0.8 10/23/19 3/3/20 7/13/20 11/22/20 4/3/21 8/13/21

Sanitas™ v.9.6.31 . UG

Constituent: Boron Analysis Run 10/13/2021 3:58 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

Constituent: Boron Analysis Run 10/13/2021 3:58 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

Constituent: Boron Analysis Run 10/13/2021 3:58 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Hammond AP-4

Constituent: Boron Analysis Run 10/13/2021 3:58 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Hammond AP-4

Constituent: Boron Analysis Run 10/13/2021 3:58 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Hammond AP-4

Constituent: Boron Analysis Run 10/13/2021 3:58 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

Constituent: Boron Analysis Run 10/13/2021 3:58 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Hammond AP-4

Sanitas™ v.9.6.31 . UG Sanitas™ v.9.6.31 . UG

Constituent: Boron Analysis Run 10/13/2021 3:58 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Hammond AP-4

Sen's Slope Estimator HGWA-112 (bg) n = 14 Slope = 0.07036 units per year. Mann-Kendall 6.4 statistic = 20 critical = 48 Trend not sig-nificant at 99% confidence level 4.8 (α = 0.005 per tail). 3.2 1.6 8/30/16 8/26/17 8/23/18 8/19/19 8/15/20 8/12/21

Constituent: Calcium Analysis Run 10/13/2021 3:58 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Hammond AP-4

Constituent: Calcium Analysis Run 10/13/2021 3:58 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Hammond AP-4

Constituent: Calcium Analysis Run 10/13/2021 3:58 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

Constituent: Calcium Analysis Run 10/13/2021 3:58 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

Constituent: Calcium Analysis Run 10/13/2021 3:58 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Hammond AP-4

Constituent: Calcium Analysis Run 10/13/2021 3:58 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

Constituent: Calcium Analysis Run 10/13/2021 3:58 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

Sanitas™ v.9.6.31. UG Sanitas™ v.9.6.31. UG

Constituent: Calcium Analysis Run 10/13/2021 3:58 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

Sen's Slope Estimator HGWA-111 (bg) Slope = -0.07374 units per year. 3.2 Mann-Kendall critical = -48 Trend not sig-nificant at 99% confidence level 2.4 (α = 0.005 per tail). 1.6 0.8 8/30/16 8/26/17 8/23/18 8/19/19 8/15/20 8/12/21

Sanitas™ v.9.6.31 . UG

Constituent: Chloride Analysis Run 10/13/2021 3:58 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

Constituent: Calcium Analysis Run 10/13/2021 3:58 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

Sen's Slope Estimator

Sanitas™ v.9.6.31 . UG

1.2

8/30/16 8/26/17 8/23/18 8/19/19 8/15/20 8/12/21

Constituent: Chloride Analysis Run 10/13/2021 3:58 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

Constituent: Chloride Analysis Run 10/13/2021 3:58 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

Constituent: Chloride Analysis Run 10/13/2021 3:58 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

Constituent: Chloride Analysis Run 10/13/2021 3:58 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

Sen's Slope Estimator

Sanitas™ v.9.6.31 . UG

8/31/16

8/28/17

Constituent: Chloride Analysis Run 10/13/2021 3:58 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Hammond AP-4

8/22/19

8/18/20

8/16/21

8/25/18

Constituent: pH Analysis Run 10/13/2021 3:58 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Hammond AP-4

Constituent: pH Analysis Run 10/13/2021 3:58 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

Constituent: pH Analysis Run 10/13/2021 3:58 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Hammond AP-4

Constituent: pH Analysis Run 10/13/2021 3:58 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Hammond AP-4

Constituent: pH Analysis Run 10/13/2021 3:59 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Hammond AP-4

Constituent: pH Analysis Run 10/13/2021 3:59 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Hammond AP-4

Constituent: pH Analysis Run 10/13/2021 3:59 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Hammond AP-4

Constituent: Sulfate Analysis Run 10/13/2021 3:59 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Hammond AP-4

Constituent: Sulfate Analysis Run 10/13/2021 3:59 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Hammond AP-4

Sanitas™ v.9.6.31 . UG

Constituent: Sulfate Analysis Run 10/13/2021 3:59 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Hammond AP-4

Constituent: Sulfate Analysis Run 10/13/2021 3:59 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Hammond AP-4

Constituent: Sulfate Analysis Run 10/13/2021 3:59 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Hammond AP-4

Constituent: Sulfate Analysis Run 10/13/2021 3:59 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Hammond AP-4

8/22/19

8/18/20

8/25/18

8/16/21

Sanitas™ v.9.6.31 . UG

8/31/16

8/28/17

Constituent: Sulfate Analysis Run 10/13/2021 3:59 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Hammond AP-4

Constituent: Sulfate Analysis Run 10/13/2021 3:59 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Hammond AP-4

Constituent: Sulfate Analysis Run 10/13/2021 3:59 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Hammond AP-4

Constituent: Sulfate Analysis Run 10/13/2021 3:59 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Hammond AP-4

Constituent: Sulfate Analysis Run 10/13/2021 3:59 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Hammond AP-4

Constituent: Sulfate Analysis Run 10/13/2021 3:59 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Hammond AP-4

mg/L

Constituent: Sulfate Analysis Run 10/13/2021 3:59 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Hammond AP-4

Constituent: Total Dissolved Solids Analysis Run 10/13/2021 3:59 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Hammond AP-4

Constituent: Total Dissolved Solids Analysis Run 10/13/2021 3:59 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

Constituent: Total Dissolved Solids Analysis Run 10/13/2021 3:59 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

Constituent: Total Dissolved Solids Analysis Run 10/13/2021 3:59 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Hammond AP-4

Constituent: Total Dissolved Solids Analysis Run 10/13/2021 3:59 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

Constituent: Total Dissolved Solids Analysis Run 10/13/2021 3:59 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

Constituent: Total Dissolved Solids Analysis Run 10/13/2021 3:59 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

Constituent: Total Dissolved Solids Analysis Run 10/13/2021 3:59 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Hammond AP-4

Constituent: Total Dissolved Solids Analysis Run 10/13/2021 3:59 PM View: Constituents View Plant Hammond Client: Southern Company Data: Hammond AP-4

FIGURE F.

Upper Tolerance Limits

Plant Hammond Client: Southern Company Data: Hammond AP-4 Printed 10/15/2021, 3:36 PM

Constituent	Upper Lim.	Lower Lim.	Date	Observ.	Sig.	Bg N	%NDs	Transform	<u>Alpha</u>	Method
Antimony (mg/L)	0.003	n/a	n/a	n/a	n/a	43	93.02	n/a	0.1102	NP Inter(NDs)
Arsenic (mg/L)	0.005	n/a	n/a	n/a	n/a	57	91.23	n/a	0.05373	NP Inter(NDs)
Barium (mg/L)	0.1	n/a	n/a	n/a	n/a	57	0	n/a	0.05373	NP Inter(normality)
Beryllium (mg/L)	0.0019	n/a	n/a	n/a	n/a	57	87.72	n/a	0.05373	NP Inter(NDs)
Cadmium (mg/L)	0.0005	n/a	n/a	n/a	n/a	57	100	n/a	0.05373	NP Inter(NDs)
Chromium (mg/L)	0.0061	n/a	n/a	n/a	n/a	57	31.58	n/a	0.05373	NP Inter(normality)
Cobalt (mg/L)	0.005	n/a	n/a	n/a	n/a	57	85.96	n/a	0.05373	NP Inter(NDs)
Combined Radium 226 & 228 (pCi/L)	1.362	n/a	n/a	n/a	n/a	57	0	No	0.05	Inter
Fluoride (mg/L)	0.1688	n/a	n/a	n/a	n/a	60	26.67	No	0.05	Inter
Lead (mg/L)	0.0016	n/a	n/a	n/a	n/a	57	63.16	n/a	0.05373	NP Inter(NDs)
Lithium (mg/L)	0.03	n/a	n/a	n/a	n/a	57	42.11	n/a	0.05373	NP Inter(normality)
Mercury (mg/L)	0.0002	n/a	n/a	n/a	n/a	43	72.09	n/a	0.1102	NP Inter(NDs)
Molybdenum (mg/L)	0.01	n/a	n/a	n/a	n/a	43	86.05	n/a	0.1102	NP Inter(NDs)
Selenium (mg/L)	0.005	n/a	n/a	n/a	n/a	43	79.07	n/a	0.1102	NP Inter(NDs)
Thallium (mg/L)	0.001	n/a	n/a	n/a	n/a	43	100	n/a	0.1102	NP Inter(NDs)

FIGURE G.

PLANT HAMMOND AP-4 GWPS									
Constituent Name	MCL	Background Limit	GWPS						
Antimony, Total (mg/L)	0.006	0.003	0.006						
Arsenic, Total (mg/L)	0.01	0.005	0.01						
Barium, Total (mg/L)	2	0.1	2						
Beryllium, Total (mg/L)	0.004	0.0019	0.004						
Cadmium, Total (mg/L)	0.005	0.0005	0.005						
Chromium, Total (mg/L)	0.1	0.0061	0.1						
Cobalt, Total (mg/L)	n/a	0.005	0.005						
Combined Radium, Total (pCi/L)	5	1.36	5						
Fluoride, Total (mg/L)	4	0.17	4						
Lead, Total (mg/L)	n/a	0.0016	0.0016						
Lithium, Total (mg/L)	n/a	0.03	0.03						
Mercury, Total (mg/L)	0.002	0.0002	0.002						
Molybdenum, Total (mg/L)	n/a	0.01	0.01						
Selenium, Total (mg/L)	0.05	0.005	0.05						
Thallium, Total (mg/L)	0.002	0.001	0.002						

^{*}MCL = Maximum Contaminant Level

^{*}GWPS = Groundwater Protection Standard

FIGURE H.

Confidence Intervals - Significant Results

Plant Hammond Client: Southern Company Data: Hammond AP-4 Printed 10/21/2021, 3:22 PM

Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	Compliance	Sig. N	Std. Dev.	%NDs	Transform	<u>Alpha</u>	Method
Cobalt (mg/L)	HGWC-117	0.01056	0.005291	0.005	Yes 15	0.00389	0	No	0.01	Param.
Mercury (mg/L)	HGWC-103	0.0005	0.00027	0.0002	Yes 11	0.0001382	81.82	No	0.006	NP (NDs)
Mercury (mg/L)	HGWC-105	0.0005	0.0005	0.0002	Yes 11	0.00008442	90.91	No	0.006	NP (NDs)
Mercury (mg/L)	HGWC-107	0.0005	0.0005	0.0002	Yes 11	0.0001254	90.91	No	0.006	NP (NDs)
Mercury (mg/L)	HGWC-117	0.0005	0.0003	0.0002	Yes 11	0.0001374	81.82	No	0.006	NP (NDs)

Confidence Intervals - All Results

Plant Hammond Client: Southern Company Data: Hammond AP-4 Printed 10/21/2021, 3:22 PM

Constituent	Well	Upper Lim.	Lower Lim.	Compliance	Sig.	<u>N</u>	Std. Dev.	%NDs	Transform	<u>Alpha</u>	Method
Antimony (mg/L)	HGWC-102	0.003	0.00076	0.006	No	9	0.0007467	88.89	No	0.002	NP (NDs)
Antimony (mg/L)	HGWC-103	0.003	0.003	0.006	No	11	0.0002412	90.91	No	0.006	NP (NDs)
Antimony (mg/L)	HGWC-107	0.003	0.003	0.006	No	11	0.0005729	90.91	No	0.006	NP (NDs)
Arsenic (mg/L)	HGWC-101	0.005	0.00039	0.01	No	15	0.00119	93.33	No	0.01	NP (NDs)
Arsenic (mg/L)	HGWC-102	0.005	0.00065	0.01	No	10	0.00223	60	No	0.011	NP (NDs)
Arsenic (mg/L)	HGWC-109	0.002628	0.001457	0.01	No	15	0.0009493	0	sqrt(x)	0.01	Param.
Arsenic (mg/L)	HGWC-117	0.005	0.00037	0.01	No	15	0.001195	93.33	No	0.01	NP (NDs)
Arsenic (mg/L)	HGWC-118	0.005	0.001	0.01	No	15	0.001033	93.33	No	0.01	NP (NDs)
Barium (mg/L)	HGWC-101	0.04648	0.04023	2	No	15	0.004608	0	No	0.01	Param.
Barium (mg/L)	HGWC-102	0.03383	0.02637	2	No	10	0.004175	0	No	0.01	Param.
Barium (mg/L) Barium (mg/L)	HGWC-103 HGWC-105	0.04095 0.0745	0.0354 0.066	2	No No	15 15	0.004409 0.0049	0	x^2 No	0.01 0.01	Param. NP (normality)
Barium (mg/L)	HGWC-103	0.0745	0.03685	2	No	15	0.0049	0	x^4	0.01	Param.
Barium (mg/L)	HGWC-109	0.08824	0.08183	2	No	15	0.004732	0	No	0.01	Param.
Barium (mg/L)	HGWC-117	0.05093	0.04098	2	No	15	0.007342	0	No	0.01	Param.
Barium (mg/L)	HGWC-118	0.06321	0.05287	2	No	15	0.007629	0	No	0.01	Param.
Beryllium (mg/L)	HGWC-101	0.0005	0.000059	0.004	No	15	0.0002263	53.33	No	0.01	NP (NDs)
Beryllium (mg/L)	HGWC-103	0.0005	0.000088	0.004	No	15	0.0001797	80	No	0.01	NP (NDs)
Beryllium (mg/L)	HGWC-117	0.0005	0.000066	0.004	No	15	0.00022	60	No	0.01	NP (NDs)
Beryllium (mg/L)	HGWC-118	0.0005	0.000093	0.004	No	15	0.0001051	93.33	No	0.01	NP (NDs)
Cadmium (mg/L)	HGWC-101	0.0002208	0.0001439	0.005	No	15	0.00005678	13.33	No	0.01	Param.
Cadmium (mg/L)	HGWC-102	0.0007379	0.0002681	0.005	No	10	0.0002633	0	No	0.01	Param.
Cadmium (mg/L)	HGWC-103	0.0007934	0.0006692	0.005	No	15	0.00009164	0	No	0.01	Param.
Cadmium (mg/L)	HGWC-107	0.00025	0.00009	0.005	No	15	0.00007792	53.33	No	0.01	NP (NDs)
Cadmium (mg/L)	HGWC-117	0.0008752	0.0005888	0.005	No	15	0.0002113	0	No	0.01	Param.
Chromium (mg/L)	HGWC-101	0.005	0.00075	0.1	No	15	0.00195	73.33	No	0.01	NP (NDs)
Chromium (mg/L)	HGWC-102	0.005	0.00063	0.1	No	10	0.001868	80	No	0.011	NP (NDs)
Chromium (mg/L)	HGWC-103	0.005	0.00069	0.1	No	15	0.002021	60	No	0.01	NP (NDs)
Chromium (mg/L)	HGWC-105	0.005	0.00064	0.1	No	15	0.001963	73.33	No	0.01	NP (NDs)
Chromium (mg/L)	HGWC-107	0.005	0.00074	0.1	No	15	0.0011	93.33	No	0.01	NP (NDs)
Chromium (mg/L)	HGWC-109	0.005	0.0014	0.1	No	15 15	0.001412	86.67	No	0.01 0.01	NP (NDs)
Chromium (mg/L) Chromium (mg/L)	HGWC-117 HGWC-118	0.005 0.005	0.001 0.00098	0.1 0.1	No No	15	0.0019 0.00186	73.33 66.67	No No	0.01	NP (NDs) NP (NDs)
Cobalt (mg/L)	HGWC-101	0.003	0.00098	0.005	No	15	0.0005693	6.667	No	0.01	Param.
						10	0.0000000		140	0.01	i didili.
Cobalt (mg/L)	HGWC-102	0.002228	0.0009205		Nο	10	0.000888	0	x^(1/3)	0.01	Param
Cobalt (mg/L) Cobalt (mg/L)	HGWC-102 HGWC-103	0.002228 0.002324	0.0009205 0.001782	0.005	No No	10 15	0.000888 0.0003998	0	x^(1/3) No	0.01 0.01	Param. Param.
Cobalt (mg/L)	HGWC-103	0.002324	0.001782	0.005 0.005	No	15	0.0003998	0	No	0.01	Param.
Cobalt (mg/L) Cobalt (mg/L)				0.005 0.005 0.005			0.0003998 0.0008864				
Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L)	HGWC-103 HGWC-105	0.002324 0.0025	0.001782 0.00045	0.005 0.005	No No	15 15	0.0003998	0 26.67	No No	0.01 0.01	Param. NP (normality)
Cobalt (mg/L) Cobalt (mg/L)	HGWC-103 HGWC-105 HGWC-109	0.002324 0.0025 0.002163	0.001782 0.00045 0.001246	0.005 0.005 0.005 0.005	No No No	15 15 15	0.0003998 0.0008864 0.000677	0 26.67 0	No No No	0.01 0.01 0.01	Param. NP (normality) Param.
Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L)	HGWC-103 HGWC-105 HGWC-109 HGWC-117	0.002324 0.0025 0.002163 0.01056	0.001782 0.00045 0.001246 0.005291	0.005 0.005 0.005 0.005 0.005	No No No Yes	15 15 15 15	0.0003998 0.0008864 0.000677 0.00389	0 26.67 0 0	No No No	0.01 0.01 0.01 0.01	Param. NP (normality) Param. Param.
Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L)	HGWC-103 HGWC-105 HGWC-109 HGWC-117 HGWC-118	0.002324 0.0025 0.002163 0.01056 0.0025	0.001782 0.00045 0.001246 0.005291 0.0004	0.005 0.005 0.005 0.005 0.005 0.005	No No No Yes No	15 15 15 15 15	0.0003998 0.0008864 0.000677 0.00389 0.001028	0 26.67 0 0 46.67	No No No No	0.01 0.01 0.01 0.01 0.01	Param. NP (normality) Param. Param. NP (normality)
Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L)	HGWC-103 HGWC-105 HGWC-109 HGWC-117 HGWC-118 HGWC-101	0.002324 0.0025 0.002163 0.01056 0.0025 0.9272	0.001782 0.00045 0.001246 0.005291 0.0004 0.4325	0.005 0.005 0.005 0.005 0.005 0.005	No No No Yes No No	15 15 15 15 15 15	0.0003998 0.0008864 0.000677 0.00389 0.001028 0.365	0 26.67 0 0 46.67	No No No No No	0.01 0.01 0.01 0.01 0.01 0.01	Param. NP (normality) Param. Param. NP (normality) Param.
Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L)	HGWC-103 HGWC-105 HGWC-109 HGWC-117 HGWC-118 HGWC-101 HGWC-102	0.002324 0.0025 0.002163 0.01056 0.0025 0.9272 1.353	0.001782 0.00045 0.001246 0.005291 0.0004 0.4325 0.5045	0.005 0.005 0.005 0.005 0.005 0.005 5	No No No Yes No No	15 15 15 15 15 15 9	0.0003998 0.0008864 0.000677 0.00389 0.001028 0.365 0.4397	0 26.67 0 0 46.67 0	No No No No No No	0.01 0.01 0.01 0.01 0.01 0.01	Param. NP (normality) Param. Param. NP (normality) Param. Param.
Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L)	HGWC-103 HGWC-105 HGWC-109 HGWC-117 HGWC-118 HGWC-101 HGWC-102 HGWC-103	0.002324 0.0025 0.002163 0.01056 0.0025 0.9272 1.353 0.9516	0.001782 0.00045 0.001246 0.005291 0.0004 0.4325 0.5045 0.4448	0.005 0.005 0.005 0.005 0.005 0.005 5 5	No No No Yes No No No	15 15 15 15 15 15 15	0.0003998 0.0008864 0.000677 0.00389 0.001028 0.365 0.4397 0.3739	0 26.67 0 0 46.67 0 0 0	No No No No No No No	0.01 0.01 0.01 0.01 0.01 0.01 0.01	Param. NP (normality) Param. Param. NP (normality) Param. Param. Param.
Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L)	HGWC-103 HGWC-105 HGWC-109 HGWC-117 HGWC-118 HGWC-101 HGWC-102 HGWC-103 HGWC-105 HGWC-107 HGWC-109	0.002324 0.0025 0.002163 0.01056 0.0025 0.9272 1.353 0.9516 0.9251 1.136 0.8434	0.001782 0.00045 0.001246 0.005291 0.0004 0.4325 0.5045 0.4448 0.5184 0.5262 0.5213	0.005 0.005 0.005 0.005 0.005 0.005 5 5 5	No No No Yes No No No No No No No No No No No No No	15 15 15 15 15 15 15 15 15 15 15	0.0003998 0.0008864 0.000677 0.00389 0.001028 0.365 0.4397 0.3739 0.3001 0.4499	0 26.67 0 0 46.67 0 0 0	No No No No No No No No No No No No No N	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	Param. NP (normality) Param. Param. NP (normality) Param. Param. Param. Param. Param. Param. Param. Param.
Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L)	HGWC-103 HGWC-105 HGWC-109 HGWC-117 HGWC-118 HGWC-101 HGWC-102 HGWC-103 HGWC-105 HGWC-107 HGWC-109 HGWC-117	0.002324 0.0025 0.002163 0.01056 0.0025 0.9272 1.353 0.9516 0.9251 1.136 0.8434 0.8698	0.001782 0.00045 0.001246 0.005291 0.0004 0.4325 0.5045 0.4448 0.5184 0.5262 0.5213	0.005 0.005 0.005 0.005 0.005 0.005 5 5 5	No No No Yes No No No No No No No No No No No No No	15 15 15 15 15 15 15 15 15 15 15	0.0003998 0.0008864 0.000677 0.00389 0.001028 0.365 0.4397 0.3739 0.3001 0.4499 0.2376 0.3655	0 26.67 0 0 46.67 0 0 0 0	No No No No No No No No No No No No No N	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	Param. NP (normality) Param. Param. NP (normality) Param. Param. Param. Param. Param. Param. Param. Param. Param. Param.
Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L)	HGWC-103 HGWC-105 HGWC-109 HGWC-117 HGWC-118 HGWC-101 HGWC-102 HGWC-103 HGWC-105 HGWC-107 HGWC-109 HGWC-117 HGWC-118	0.002324 0.0025 0.002163 0.01056 0.0025 0.9272 1.353 0.9516 0.9251 1.136 0.8434 0.8698 1.186	0.001782 0.00045 0.001246 0.005291 0.0004 0.4325 0.5045 0.4448 0.5184 0.5262 0.5213 0.3744 0.4655	0.005 0.005 0.005 0.005 0.005 0.005 5 5 5	No No Yes No No No No No No No No No No No No No	15 15 15 15 15 15 15 15 15 15 15 15	0.0003998 0.0008864 0.000677 0.00389 0.001028 0.365 0.4397 0.3739 0.3001 0.4499 0.2376 0.3655 0.5089	0 26.67 0 46.67 0 0 0 0 0	No No No No No No No No No No No No No N	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	Param. NP (normality) Param. Param. NP (normality) Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. Param.
Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Fluoride (mg/L)	HGWC-103 HGWC-105 HGWC-109 HGWC-117 HGWC-118 HGWC-101 HGWC-102 HGWC-103 HGWC-105 HGWC-107 HGWC-109 HGWC-117 HGWC-118 HGWC-101	0.002324 0.0025 0.002163 0.01056 0.0025 0.9272 1.353 0.9516 0.9251 1.136 0.8434 0.8698 1.186	0.001782 0.00045 0.001246 0.005291 0.0004 0.4325 0.5045 0.4448 0.5184 0.5262 0.5213 0.3744 0.4655 0.05	0.005 0.005 0.005 0.005 0.005 0.005 5 5 5	No No Yes No No No No No No No No No No No No No	15 15 15 15 15 15 15 15 15 15 15 15 15	0.0003998 0.0008864 0.000677 0.00389 0.001028 0.365 0.4397 0.3739 0.3001 0.4499 0.2376 0.3655 0.5089	0 26.67 0 46.67 0 0 0 0 0 0 0 0	No No No No No No No No No No No No No N	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	Param. NP (normality) Param. Param. NP (normality) Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. Param.
Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Fluoride (mg/L) Fluoride (mg/L)	HGWC-103 HGWC-105 HGWC-109 HGWC-117 HGWC-118 HGWC-101 HGWC-102 HGWC-103 HGWC-105 HGWC-107 HGWC-109 HGWC-117 HGWC-118 HGWC-101 HGWC-101	0.002324 0.0025 0.002163 0.01056 0.0025 0.9272 1.353 0.9516 0.9251 1.136 0.8434 0.8698 1.186 0.1	0.001782 0.00045 0.001246 0.005291 0.0004 0.4325 0.5045 0.4448 0.5184 0.5262 0.5213 0.3744 0.4655 0.05	0.005 0.005 0.005 0.005 0.005 0.005 5 5 5 5 5 5 5 5 4	No No No No No No No No No No No No No N	15 15 15 15 15 15 15 15 15 15 15 15 15 1	0.0003998 0.0008864 0.000677 0.00389 0.001028 0.365 0.4397 0.3739 0.3001 0.4499 0.2376 0.3655 0.5089 0.02082 0.03795	0 26.67 0 0 46.67 0 0 0 0 0 0 0 0 0 0 9	No No No No No No No No No No No No No N	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	Param. NP (normality) Param. Param. NP (normality) Param.
Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L)	HGWC-103 HGWC-105 HGWC-109 HGWC-117 HGWC-118 HGWC-101 HGWC-102 HGWC-103 HGWC-105 HGWC-107 HGWC-109 HGWC-117 HGWC-118 HGWC-101 HGWC-101 HGWC-102 HGWC-102	0.002324 0.0025 0.002163 0.01056 0.0025 0.9272 1.353 0.9516 0.9251 1.136 0.8434 0.8698 1.186 0.1 0.1	0.001782 0.00045 0.001246 0.005291 0.0004 0.4325 0.5045 0.4448 0.5184 0.5262 0.5213 0.3744 0.4655 0.05 0.1	0.005 0.005 0.005 0.005 0.005 0.005 5 5 5 5 5 5 5 5 4 4	No No No No No No No No No No No No No N	15 15 15 15 15 15 15 15 15 15 15 15 15 1	0.0003998 0.0008864 0.000677 0.00389 0.001028 0.365 0.4397 0.3739 0.3001 0.4499 0.2376 0.3655 0.5089 0.02082 0.03795 0.02358	0 26.67 0 0 46.67 0 0 0 0 0 0 0 0 87.5	No No No No No No No No No No No No No N	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	Param. NP (normality) Param. Param. NP (normality) Param. NP (NDs) NP (NDs)
Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L)	HGWC-103 HGWC-105 HGWC-109 HGWC-117 HGWC-118 HGWC-101 HGWC-102 HGWC-103 HGWC-105 HGWC-107 HGWC-109 HGWC-117 HGWC-118 HGWC-101 HGWC-101 HGWC-102 HGWC-103 HGWC-103	0.002324 0.0025 0.002163 0.01056 0.0025 0.9272 1.353 0.9516 0.9251 1.136 0.8434 0.8698 1.186 0.1 0.1	0.001782 0.00045 0.001246 0.005291 0.0004 0.4325 0.5045 0.4448 0.5184 0.5262 0.5213 0.3744 0.4655 0.05 0.1 0.06	0.005 0.005 0.005 0.005 0.005 0.005 5 5 5 5 5 5 5 4 4 4	No No No No No No No No No No No No No N	15 15 15 15 15 15 15 15 15 15 15 15 16 10 16	0.0003998 0.0008864 0.000677 0.00389 0.001028 0.365 0.4397 0.3739 0.3001 0.4499 0.2376 0.3655 0.5089 0.02082 0.03795 0.02358 0.03042	0 26.67 0 0 46.67 0 0 0 0 0 0 0 0 87.5 90 75 56.25	No No No No No No No No No No No No No N	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	Param. NP (normality) Param. Param. NP (normality) Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. NP (NDs) NP (NDs) NP (NDs)
Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L)	HGWC-103 HGWC-105 HGWC-109 HGWC-117 HGWC-118 HGWC-101 HGWC-102 HGWC-103 HGWC-105 HGWC-107 HGWC-109 HGWC-117 HGWC-118 HGWC-101 HGWC-101 HGWC-102 HGWC-103 HGWC-105 HGWC-105 HGWC-105	0.002324 0.0025 0.002163 0.01056 0.0025 0.9272 1.353 0.9516 0.9251 1.136 0.8434 0.8698 1.186 0.1 0.1 0.13 0.13	0.001782 0.00045 0.001246 0.005291 0.0004 0.4325 0.5045 0.4448 0.5184 0.5262 0.5213 0.3744 0.4655 0.05 0.1 0.06 0.07 0.057	0.005 0.005 0.005 0.005 0.005 0.005 5 5 5 5 5 5 4 4 4	No No No No No No No No No No No No No N	15 15 15 15 15 15 15 15 15 15 15 15 16 10 16 16	0.0003998 0.0008864 0.000677 0.00389 0.001028 0.365 0.4397 0.3739 0.3001 0.4499 0.2376 0.3655 0.5089 0.02082 0.03795 0.02358 0.03042 0.03732	0 26.67 0 0 46.67 0 0 0 0 0 0 0 87.5 90 75 56.25 56.25	No No No No No No No No No No No No No N	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	Param. NP (normality) Param. Param. NP (normality) Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs)
Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L)	HGWC-103 HGWC-105 HGWC-109 HGWC-117 HGWC-118 HGWC-101 HGWC-102 HGWC-105 HGWC-107 HGWC-109 HGWC-117 HGWC-118 HGWC-101 HGWC-102 HGWC-103 HGWC-105 HGWC-105 HGWC-107 HGWC-107	0.002324 0.0025 0.002163 0.01056 0.0025 0.9272 1.353 0.9516 0.9251 1.136 0.8434 0.8698 1.186 0.1 0.1 0.1 0.13 0.13 0.16 0.1208	0.001782 0.00045 0.001246 0.005291 0.0004 0.4325 0.5045 0.4448 0.5184 0.5262 0.5213 0.3744 0.4655 0.05 0.1 0.06 0.07 0.057 0.07397	0.005 0.005 0.005 0.005 0.005 0.005 5 5 5 5 5 4 4 4 4	No No No No No No No No No No No No No N	15 15 15 15 15 15 15 15 15 15 15 15 16 16 16 16	0.0003998 0.0008864 0.000677 0.00389 0.001028 0.365 0.4397 0.3739 0.3001 0.4499 0.2376 0.3655 0.5089 0.02082 0.03795 0.02358 0.03042 0.03732 0.03597	0 26.67 0 46.67 0 0 0 0 0 0 0 0 87.5 90 75 56.25 56.25 12.5	No No No No No No No No No No No No No N	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	Param. NP (normality) Param. Param. NP (normality) Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. Polam. NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) Param.
Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Fluoride (mg/L)	HGWC-103 HGWC-105 HGWC-109 HGWC-117 HGWC-118 HGWC-101 HGWC-102 HGWC-103 HGWC-105 HGWC-107 HGWC-109 HGWC-117 HGWC-118 HGWC-101 HGWC-101 HGWC-102 HGWC-103 HGWC-105 HGWC-105 HGWC-105	0.002324 0.0025 0.002163 0.01056 0.0025 0.9272 1.353 0.9516 0.9251 1.136 0.8434 0.8698 1.186 0.1 0.1 0.13 0.13	0.001782 0.00045 0.001246 0.005291 0.0004 0.4325 0.5045 0.4448 0.5184 0.5262 0.5213 0.3744 0.4655 0.05 0.1 0.06 0.07 0.057	0.005 0.005 0.005 0.005 0.005 0.005 5 5 5 5 5 5 4 4 4	No No No No No No No No No No No No No N	15 15 15 15 15 15 15 15 15 15 15 15 16 10 16 16	0.0003998 0.0008864 0.000677 0.00389 0.001028 0.365 0.4397 0.3739 0.3001 0.4499 0.2376 0.3655 0.5089 0.02082 0.03795 0.02358 0.03042 0.03732	0 26.67 0 0 46.67 0 0 0 0 0 0 0 87.5 90 75 56.25 56.25	No No No No No No No No No No No No No N	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	Param. NP (normality) Param. Param. NP (normality) Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs)
Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L)	HGWC-103 HGWC-105 HGWC-109 HGWC-117 HGWC-118 HGWC-101 HGWC-102 HGWC-105 HGWC-107 HGWC-109 HGWC-117 HGWC-118 HGWC-101 HGWC-102 HGWC-103 HGWC-105 HGWC-107 HGWC-109 HGWC-107 HGWC-109 HGWC-107 HGWC-109 HGWC-107	0.002324 0.0025 0.002163 0.01056 0.0025 0.9272 1.353 0.9516 0.9251 1.136 0.8434 0.8698 1.186 0.1 0.1 0.13 0.13 0.16 0.1208 0.11	0.001782 0.00045 0.001246 0.005291 0.0004 0.4325 0.5045 0.4448 0.5184 0.5262 0.5213 0.3744 0.4655 0.05 0.1 0.06 0.07 0.057 0.07397 0.09	0.005 0.005 0.005 0.005 0.005 0.005 5 5 5 5 5 4 4 4 4 4	No No No No No No No No No No No No No N	15 15 15 15 15 15 15 15 15 15 15 15 16 10 16 16 16 16	0.0003998 0.0008864 0.000677 0.00389 0.001028 0.365 0.4397 0.3739 0.3001 0.4499 0.2376 0.3655 0.5089 0.02082 0.03795 0.02358 0.03042 0.03732 0.03597 0.05844	0 26.67 0 46.67 0 0 0 0 0 0 87.5 90 75 56.25 56.25 56.25	No No No No No No No No No No No No No N	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	Param. NP (normality) Param. Param. NP (normality) Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) Param. NP (NDs)
Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Fluoride (mg/L)	HGWC-103 HGWC-105 HGWC-109 HGWC-117 HGWC-118 HGWC-101 HGWC-102 HGWC-105 HGWC-107 HGWC-109 HGWC-117 HGWC-101 HGWC-102 HGWC-103 HGWC-105 HGWC-105 HGWC-107 HGWC-109 HGWC-107 HGWC-109 HGWC-107 HGWC-107 HGWC-109 HGWC-109 HGWC-117	0.002324 0.0025 0.002163 0.01056 0.0025 0.9272 1.353 0.9516 0.9251 1.136 0.8434 0.8698 1.186 0.1 0.1 0.13 0.13 0.16 0.1208 0.11 0.3	0.001782 0.00045 0.001246 0.005291 0.0004 0.4325 0.5045 0.4448 0.5184 0.5262 0.5213 0.3744 0.4655 0.05 0.1 0.06 0.07 0.067 0.07397 0.09 0.075	0.005 0.005 0.005 0.005 0.005 0.005 5 5 5 5 5 4 4 4 4 4 4	No No No No No No No No No No No No No N	15 15 15 15 15 15 15 15 15 15 15 16 10 16 16 16 16 16 17	0.0003998 0.0008864 0.000677 0.00389 0.001028 0.365 0.4397 0.3739 0.3001 0.4499 0.2376 0.3655 0.5089 0.02082 0.03795 0.02358 0.03042 0.03732 0.03597 0.05844 0.2024	0 26.67 0 46.67 0 0 0 0 0 0 0 87.5 90 75 56.25 56.25 56.25 0	No No No No No No No No No No No No No N	0.01 0.01	Param. NP (normality) Param. Param. NP (normality) Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs)
Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Fluoride (mg/L)	HGWC-103 HGWC-105 HGWC-109 HGWC-117 HGWC-118 HGWC-101 HGWC-102 HGWC-103 HGWC-105 HGWC-107 HGWC-109 HGWC-117 HGWC-101 HGWC-101 HGWC-102 HGWC-103 HGWC-105 HGWC-107 HGWC-101 HGWC-101 HGWC-105 HGWC-105 HGWC-107	0.002324 0.0025 0.002163 0.01056 0.0025 0.9272 1.353 0.9516 0.9251 1.136 0.8434 0.8698 1.186 0.1 0.1 0.13 0.13 0.16 0.1208 0.11 0.3 0.001	0.001782 0.00045 0.001246 0.005291 0.0004 0.4325 0.5045 0.4448 0.5184 0.5262 0.5213 0.3744 0.4655 0.05 0.1 0.06 0.07 0.057 0.07397 0.09 0.075 0.0009	0.005 0.005 0.005 0.005 0.005 5 5 5 5 5 4 4 4 4 4 4 4 4	No No No No No No No No No No No No No N	15 15 15 15 15 15 15 15 15 15 15 15 16 16 16 16 16 16 17 15	0.0003998 0.0008864 0.000677 0.00389 0.001028 0.365 0.4397 0.3739 0.3001 0.4499 0.2376 0.3655 0.5089 0.02082 0.03795 0.02358 0.03042 0.03732 0.03597 0.05844 0.2024 0.00002582	0 26.67 0 0 46.67 0 0 0 0 0 0 0 87.5 90 75 56.25 56.25 12.5 56.25 0 93.33	No No No No No No No No No No No No No N	0.01 0.01	Param. NP (normality) Param. Param. NP (normality) Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) Param. NP (NDs)
Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Fluoride (mg/L) Lead (mg/L)	HGWC-103 HGWC-105 HGWC-109 HGWC-117 HGWC-118 HGWC-101 HGWC-102 HGWC-103 HGWC-105 HGWC-107 HGWC-109 HGWC-117 HGWC-101 HGWC-101 HGWC-102 HGWC-103 HGWC-105 HGWC-101 HGWC-105 HGWC-101 HGWC-105 HGWC-101 HGWC-101 HGWC-101 HGWC-101 HGWC-101	0.002324 0.0025 0.002163 0.01056 0.0025 0.9272 1.353 0.9516 0.9251 1.136 0.8434 0.8698 1.186 0.1 0.1 0.13 0.13 0.16 0.1208 0.11 0.3 0.001	0.001782 0.00045 0.001246 0.005291 0.0004 0.4325 0.5045 0.4448 0.5184 0.5262 0.5213 0.3744 0.4655 0.05 0.1 0.06 0.07 0.057 0.07397 0.09 0.075 0.0009 0.001	0.005 0.005 0.005 0.005 0.005 0.005 5 5 5 5 5 4 4 4 4 4 4 4 4 0.0016 0.0016	No No No No No No No No No No No No No N	15 15 15 15 15 15 15 15 15 15 15 15 16 16 16 16 16 16 17 15 15	0.0003998 0.0008864 0.000677 0.00389 0.001028 0.365 0.4397 0.3739 0.3001 0.4499 0.2376 0.3655 0.5089 0.02082 0.03795 0.02358 0.03042 0.03732 0.03597 0.05844 0.2024 0.00002582 0.0002814	0 26.67 0 46.67 0 0 0 0 0 0 0 87.5 90 75 56.25 56.25 12.5 56.25 0 93.33	NO NO NO NO NO NO NO NO NO NO NO NO NO N	0.01 0.01	Param. NP (normality) Param. Param. NP (normality) Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs)
Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Lead (mg/L) Lead (mg/L) Lead (mg/L) Lead (mg/L) Lead (mg/L) Lead (mg/L)	HGWC-103 HGWC-105 HGWC-109 HGWC-117 HGWC-118 HGWC-101 HGWC-102 HGWC-103 HGWC-105 HGWC-107 HGWC-109 HGWC-117 HGWC-118 HGWC-101 HGWC-102 HGWC-103 HGWC-105 HGWC-101 HGWC-105 HGWC-105 HGWC-105 HGWC-105 HGWC-105 HGWC-105 HGWC-105 HGWC-105 HGWC-105 HGWC-107 HGWC-109 HGWC-117 HGWC-118 HGWC-101	0.002324 0.0025 0.002163 0.01056 0.0025 0.9272 1.353 0.9516 0.9251 1.136 0.8434 0.8698 1.186 0.1 0.1 0.13 0.13 0.16 0.1208 0.11 0.3 0.001 0.001	0.001782 0.00045 0.001246 0.005291 0.0004 0.4325 0.5045 0.4448 0.5184 0.5262 0.5213 0.3744 0.4655 0.05 0.1 0.06 0.07 0.057 0.07397 0.09 0.075 0.0009 0.001 0.00024	0.005 0.005 0.005 0.005 0.005 5 5 5 5 5 4 4 4 4 4 4 4 4 0.0016 0.0016	No No No No No No No No No No No No No N	15 15 15 15 15 15 15 15 15 15 15 15 15 1	0.0003998 0.0008864 0.000677 0.00389 0.001028 0.365 0.4397 0.3739 0.3001 0.4499 0.2376 0.3655 0.5089 0.02082 0.03795 0.02358 0.03042 0.03732 0.03597 0.05844 0.2024 0.00002582 0.0002814 0.0003768	0 26.67 0 0 46.67 0 0 0 0 0 0 0 87.5 90 75 56.25 56.25 12.5 56.25 0 93.33 90 66.67	NO NO NO NO NO NO NO NO NO NO NO NO NO N	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	Param. NP (normality) Param. Param. NP (normality) Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs)
Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Lead (mg/L) Lead (mg/L) Lead (mg/L) Lead (mg/L) Lead (mg/L) Lead (mg/L) Lead (mg/L) Lead (mg/L) Lead (mg/L) Lead (mg/L)	HGWC-103 HGWC-105 HGWC-109 HGWC-117 HGWC-118 HGWC-101 HGWC-102 HGWC-103 HGWC-105 HGWC-107 HGWC-109 HGWC-117 HGWC-118 HGWC-101 HGWC-102 HGWC-103 HGWC-105 HGWC-107 HGWC-108 HGWC-101 HGWC-101 HGWC-102 HGWC-101 HGWC-101 HGWC-102 HGWC-103 HGWC-105 HGWC-107	0.002324 0.0025 0.002163 0.01056 0.0025 0.9272 1.353 0.9516 0.9251 1.136 0.8434 0.8698 1.186 0.1 0.1 0.13 0.13 0.16 0.1208 0.11 0.3 0.001 0.001 0.001	0.001782 0.00045 0.001246 0.005291 0.0004 0.4325 0.5045 0.4448 0.5184 0.5262 0.5213 0.3744 0.4655 0.05 0.1 0.06 0.07 0.057 0.07397 0.09 0.075 0.0009 0.001 0.00024 0.000068	0.005 0.005 0.005 0.005 0.005 0.005 5 5 5	No No No No No No No No No No No No No N	15 15 15 15 15 15 15 15 15 15 15 15 16 16 16 16 16 16 16 17 15 15 15 15 15 15 15 15 15 15 15 15 15	0.0003998 0.0008864 0.000677 0.00389 0.001028 0.365 0.4397 0.3739 0.3001 0.4499 0.2376 0.3655 0.5089 0.02082 0.03795 0.02358 0.03042 0.03732 0.03597 0.05844 0.2024 0.00002582 0.0002814 0.0003768 0.000428	0 26.67 0 46.67 0 0 0 0 0 0 0 87.5 90 75 56.25 56.25 12.5 56.25 0 93.33 90 66.67 73.33	NO NO NO NO NO NO NO NO NO NO NO NO NO N	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	Param. NP (normality) Param. Param. NP (normality) Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. NP (NDs)
Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Lead (mg/L) Lead (mg/L) Lead (mg/L) Lead (mg/L) Lead (mg/L) Lead (mg/L) Lead (mg/L) Lead (mg/L) Lead (mg/L) Lead (mg/L) Lead (mg/L) Lead (mg/L) Lead (mg/L) Lead (mg/L)	HGWC-103 HGWC-105 HGWC-109 HGWC-117 HGWC-118 HGWC-101 HGWC-102 HGWC-103 HGWC-105 HGWC-107 HGWC-109 HGWC-117 HGWC-118 HGWC-101 HGWC-102 HGWC-103 HGWC-105 HGWC-107 HGWC-108 HGWC-101 HGWC-109 HGWC-101 HGWC-105 HGWC-107 HGWC-108 HGWC-107 HGWC-109 HGWC-101 HGWC-101 HGWC-101 HGWC-102 HGWC-101 HGWC-101 HGWC-101 HGWC-101 HGWC-102 HGWC-103 HGWC-105 HGWC-105 HGWC-105	0.002324 0.0025 0.002163 0.01056 0.0025 0.9272 1.353 0.9516 0.9251 1.136 0.8434 0.8698 1.186 0.1 0.1 0.13 0.13 0.16 0.1208 0.11 0.3 0.001 0.001 0.001	0.001782 0.00045 0.001246 0.005291 0.0004 0.4325 0.5045 0.4448 0.5184 0.5262 0.5213 0.3744 0.4655 0.05 0.1 0.06 0.07 0.057 0.07397 0.09 0.075 0.0009 0.001 0.00024 0.000068	0.005 0.005 0.005 0.005 0.005 0.005 5 5 5	No No No No No No No No No No No No No N	15 15 15 15 15 15 15 15 15 15 15 15 16 10 16 16 16 16 17 15 15 15 15 15 15 15 15 15 15 15 15 15	0.0003998 0.0008864 0.000677 0.00389 0.001028 0.365 0.4397 0.3739 0.3001 0.4499 0.2376 0.3655 0.5089 0.02082 0.03795 0.02358 0.03042 0.03732 0.03597 0.05844 0.2024 0.0002582 0.0002814 0.0003768 0.000428 0.0003796	0 26.67 0 46.67 0 0 0 0 0 0 0 87.5 90 75 56.25 56.25 56.25 0 93.33 90 66.67 73.33 73.33	NO NO NO NO NO NO NO NO NO NO NO NO NO N	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	Param. NP (normality) Param. Param. NP (normality) Param. Param. Param. Param. Param. Param. Param. Poram. Poram. NP (NDs)
Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Lead (mg/L)	HGWC-103 HGWC-105 HGWC-109 HGWC-117 HGWC-118 HGWC-101 HGWC-102 HGWC-103 HGWC-105 HGWC-107 HGWC-109 HGWC-117 HGWC-118 HGWC-101 HGWC-102 HGWC-103 HGWC-105 HGWC-107 HGWC-105 HGWC-107 HGWC-105 HGWC-107 HGWC-105 HGWC-107 HGWC-109 HGWC-107 HGWC-101 HGWC-101 HGWC-102 HGWC-101	0.002324 0.0025 0.002163 0.01056 0.0025 0.9272 1.353 0.9516 0.9251 1.136 0.8434 0.8698 1.186 0.1 0.1 0.13 0.13 0.16 0.1208 0.11 0.3 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001	0.001782 0.00045 0.001246 0.005291 0.0004 0.4325 0.5045 0.4448 0.5184 0.5262 0.5213 0.3744 0.4655 0.05 0.1 0.06 0.07 0.057 0.07397 0.09 0.075 0.0009 0.001 0.00024 0.000068 0.00021 0.000058 0.00019 0.00025	0.005 0.005 0.005 0.005 0.005 0.005 5 5 5	No No No No No No No No No No No No No N	15 15 15 15 15 15 15 15 15 15 15 16 10 16 16 16 16 17 15 15 15 15 15 15 15 15 15 15 15 15 15	0.0003998 0.0008864 0.000677 0.00389 0.001028 0.365 0.4397 0.3739 0.3001 0.4499 0.2376 0.3655 0.5089 0.02082 0.03795 0.02358 0.03042 0.03732 0.03597 0.05844 0.2024 0.0002582 0.0002814 0.0003768 0.0003796 0.0003322 0.0003822 0.0003822	0 26.67 0 46.67 0 0 0 0 0 0 0 87.5 90 75 56.25 56.25 0 93.33 90 66.67 73.33 73.33 86.67 66.67	NO NO NO NO NO NO NO NO NO NO NO NO NO N	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	Param. NP (normality) Param. Param. NP (normality) Param. Param. Param. Param. Param. Param. Param. Poram. NP (NDs)
Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Lead (mg/L)	HGWC-103 HGWC-105 HGWC-109 HGWC-117 HGWC-118 HGWC-101 HGWC-102 HGWC-103 HGWC-105 HGWC-107 HGWC-109 HGWC-117 HGWC-118 HGWC-101 HGWC-102 HGWC-103 HGWC-105 HGWC-107 HGWC-105 HGWC-107 HGWC-105 HGWC-107 HGWC-105 HGWC-107 HGWC-109 HGWC-107 HGWC-101 HGWC-101 HGWC-102 HGWC-101 HGWC-102 HGWC-101 HGWC-101 HGWC-101 HGWC-102 HGWC-101 HGWC-101 HGWC-102 HGWC-101 HGWC-101 HGWC-101 HGWC-101 HGWC-101 HGWC-101 HGWC-101 HGWC-101 HGWC-101 HGWC-101 HGWC-101 HGWC-101	0.002324 0.0025 0.002163 0.01056 0.0025 0.9272 1.353 0.9516 0.9251 1.136 0.8434 0.8698 1.186 0.1 0.1 0.13 0.13 0.16 0.1208 0.11 0.3 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001	0.001782 0.00045 0.001246 0.005291 0.0004 0.4325 0.5045 0.4448 0.5184 0.5262 0.5213 0.3744 0.4655 0.05 0.1 0.06 0.07 0.057 0.07397 0.09 0.075 0.0009 0.001 0.00024 0.00068 0.00021 0.000058 0.00019 0.00025 0.001028	0.005 0.005 0.005 0.005 0.005 0.005 5 5 5	No No No No No No No No No No No No No N	15 15 15 15 15 15 15 15 15 15 15 16 10 16 16 16 16 17 15 15 15 15 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16	0.0003998 0.0008864 0.000677 0.00389 0.001028 0.365 0.4397 0.3739 0.3001 0.4499 0.2376 0.3655 0.5089 0.02082 0.03795 0.02358 0.03042 0.03732 0.03597 0.05844 0.2024 0.0002582 0.0002814 0.0003768 0.0003796 0.0003322 0.0003822 0.0003822 0.0003512 0.0001408	0 26.67 0 0 46.67 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NO NO NO NO NO NO NO NO NO NO NO NO NO N	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	Param. NP (normality) Param. Param. NP (normality) Param. Param. Param. Param. Param. Param. Param. Param. Poram. NP (NDs)
Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Lead (mg/L)	HGWC-103 HGWC-105 HGWC-109 HGWC-117 HGWC-118 HGWC-101 HGWC-102 HGWC-103 HGWC-105 HGWC-107 HGWC-109 HGWC-117 HGWC-118 HGWC-101 HGWC-102 HGWC-103 HGWC-105 HGWC-107 HGWC-109 HGWC-107 HGWC-109 HGWC-107 HGWC-109 HGWC-107 HGWC-109 HGWC-117 HGWC-109 HGWC-101 HGWC-102 HGWC-101 HGWC-102 HGWC-101 HGWC-102 HGWC-101 HGWC-102 HGWC-101 HGWC-102 HGWC-103 HGWC-105 HGWC-107 HGWC-109 HGWC-107 HGWC-109 HGWC-117 HGWC-118 HGWC-101	0.002324 0.0025 0.002163 0.01056 0.0025 0.9272 1.353 0.9516 0.9251 1.136 0.8434 0.8698 1.186 0.1 0.1 0.13 0.13 0.16 0.1208 0.11 0.3 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001	0.001782 0.00045 0.001246 0.005291 0.0004 0.4325 0.5045 0.4448 0.5184 0.5262 0.5213 0.3744 0.4655 0.05 0.1 0.06 0.07 0.057 0.07397 0.09 0.075 0.0009 0.001 0.00024 0.00068 0.0001 0.00025 0.00019 0.00025 0.001028 0.0015	0.005 0.005 0.005 0.005 0.005 0.005 5 5 5	No No No No No No No No No No No No No N	15 15 15 15 15 15 15 15 15 15 15 16 10 16 16 16 16 17 15 15 15 15 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16	0.0003998 0.0008864 0.000677 0.00389 0.001028 0.365 0.4397 0.3739 0.3001 0.4499 0.2376 0.3655 0.5089 0.02082 0.03795 0.02358 0.03042 0.03732 0.03597 0.05844 0.2024 0.0002582 0.0003796 0.0003796 0.0003796 0.0003796 0.0003322 0.0003822 0.0003512 0.0001408 0.01175	0 26.67 0 0 46.67 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NO NO NO NO NO NO NO NO NO NO NO NO NO N	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	Param. NP (normality) Param. Param. NP (normality) Param. Param. Param. Param. Param. Param. Param. Poram. NP (NDs)
Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Combined Radium 226 & 228 (pCi/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Fluoride (mg/L) Lead (mg/L)	HGWC-103 HGWC-105 HGWC-109 HGWC-117 HGWC-118 HGWC-101 HGWC-102 HGWC-103 HGWC-105 HGWC-107 HGWC-109 HGWC-117 HGWC-118 HGWC-101 HGWC-102 HGWC-103 HGWC-105 HGWC-107 HGWC-105 HGWC-107 HGWC-105 HGWC-107 HGWC-105 HGWC-107 HGWC-109 HGWC-107 HGWC-101 HGWC-101 HGWC-102 HGWC-101 HGWC-102 HGWC-101 HGWC-101 HGWC-101 HGWC-102 HGWC-101 HGWC-101 HGWC-102 HGWC-101 HGWC-101 HGWC-101 HGWC-101 HGWC-101 HGWC-101 HGWC-101 HGWC-101 HGWC-101 HGWC-101 HGWC-101 HGWC-101	0.002324 0.0025 0.002163 0.01056 0.0025 0.9272 1.353 0.9516 0.9251 1.136 0.8434 0.8698 1.186 0.1 0.1 0.13 0.13 0.16 0.1208 0.11 0.3 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001	0.001782 0.00045 0.001246 0.005291 0.0004 0.4325 0.5045 0.4448 0.5184 0.5262 0.5213 0.3744 0.4655 0.05 0.1 0.06 0.07 0.057 0.07397 0.09 0.075 0.0009 0.001 0.00024 0.00068 0.00021 0.000058 0.00019 0.00025 0.001028	0.005 0.005 0.005 0.005 0.005 0.005 5 5 5	No No No No No No No No No No No No No N	15 15 15 15 15 15 15 15 15 15 15 16 10 16 16 16 16 17 15 15 15 15 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16	0.0003998 0.0008864 0.000677 0.00389 0.001028 0.365 0.4397 0.3739 0.3001 0.4499 0.2376 0.3655 0.5089 0.02082 0.03795 0.02358 0.03042 0.03732 0.03597 0.05844 0.2024 0.0002582 0.0002814 0.0003768 0.0003796 0.0003322 0.0003822 0.0003822 0.0003512 0.0001408	0 26.67 0 0 46.67 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NO NO NO NO NO NO NO NO NO NO NO NO NO N	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	Param. NP (normality) Param. Param. NP (normality) Param. Param. Param. Param. Param. Param. Param. Poram. NP (NDs)

Confidence Intervals - All Results

Plant Hammond Client: Southern Company Data: Hammond AP-4 Printed 10/21/2021, 3:22 PM Well Std. Dev. %NDs <u>Transform</u> Constituent Upper Lim. Lower Lim. Compliance Sig. N <u>Alpha</u> Method HGWC-109 Lithium (mg/L) 0.03 0.001 0.03 No 15 0.01493 53.33 0.01 NP (NDs) No Lithium (mg/L) HGWC-117 0.03 0.0017 No 15 0.01147 20 0.01 NP (normality) Lithium (mg/L) HGWC-118 0.03 0.0017 0.03 No 15 0.01418 40 No 0.01 NP (normality) HGWC-101 0.0005 0.000099 0.0002 No 11 0.0001634 81.82 No 0.006 NP (NDs) Mercury (mg/L) Mercury (mg/L) HGWC-102 0.0005 0.0001 0.0002 No 9 0.0001333 88.89 No 0.002 NP (NDs) NP (NDs) Mercury (mg/L) HGWC-103 0.0005 0.00027 0.0002 Yes 11 0.0001382 81.82 No 0.006 NP (NDs) Mercury (mg/L) HGWC-105 0.0005 0.0005 0.0002 Yes 11 0.00008442 90.91 No 0.006 Mercury (mg/L) HGWC-107 0.0005 0.0005 0.0002 Yes 11 0.0001254 90.91 No 0.006 NP (NDs) Mercury (mg/L) HGWC-109 0.0005 0.00008 0.0002 No 11 0.0001699 81.82 No 0.006 NP (NDs) HGWC-117 0.0003 Yes 11 0.0001374 0.006 Mercury (mg/L) 0.0005 0.0002 81.82 No NP (NDs) HGWC-118 0.0005 0.00009 0.0002 No 11 0.0001677 0.006 NP (NDs) Mercury (mg/L) 81.82 No HGWC-102 NP (NDs) Selenium (mg/L) 0.005 0.0015 0.05 No 9 0.001167 88.89 No 0.002 HGWC-102 0.001 0.00008 0.002 No 9 0.0003067 0.002 NP (NDs) Thallium (mg/L) 88.89 No

Constituent: Antimony Analysis Run 10/21/2021 3:19 PM View: Appendix IV
Plant Hammond Client: Southern Company Data: Hammond AP-4

Sanitas™ v.9.6.31 . UG

Parametric and Non-Parametric (NP) Confidence Interval Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Barium Analysis Run 10/21/2021 3:19 PM View: Appendix IV Plant Hammond Client: Southern Company Data: Hammond AP-4

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Arsenic Analysis Run 10/21/2021 3:19 PM View: Appendix IV
Plant Hammond Client: Southern Company Data: Hammond AP-4

Sanitas™ v.9.6.31 . UG

Non-Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01.

Parametric and Non-Parametric (NP) Confidence Interval

Constituent: Cadmium Analysis Run 10/21/2021 3:19 PM View: Appendix IV
Plant Hammond Client: Southern Company Data: Hammond AP-4

Sanitas™ v.9.6.31 . UG

Parametric and Non-Parametric (NP) Confidence Interval

Compliance limit is exceeded.* Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Non-Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted.

Constituent: Chromium Analysis Run 10/21/2021 3:19 PM View: Appendix IV
Plant Hammond Client: Southern Company Data: Hammond AP-4

Sanitas™ v.9.6.31 . UG

Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Fluoride Analysis Run 10/21/2021 3:19 PM View: Appendix IV

Plant Hammond Client: Southern Company Data: Hammond AP-4

Sanitas™ v.9.6.31 . UG

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Lithium Analysis Run 10/21/2021 3:19 PM View: Appendix IV Plant Hammond Client: Southern Company Data: Hammond AP-4

Non-Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted.

Constituent: Lead Analysis Run 10/21/2021 3:19 PM View: Appendix IV Plant Hammond Client: Southern Company Data: Hammond AP-4

Sanitas™ v.9.6.31 . UG

Non-Parametric Confidence Interval

Compliance limit is exceeded.* 0.0007 0.00056 0.00042 0.00028 0.00014

Constituent: Selenium Analysis Run 10/21/2021 3:19 PM View: Appendix IV
Plant Hammond Client: Southern Company Data: Hammond AP-4

Sanitas™ v.9.6.31 . UG

Constituent: Thallium Analysis Run 10/21/2021 3:19 PM View: Appendix IV
Plant Hammond Client: Southern Company Data: Hammond AP-4

Constituent: Antimony (mg/L) Analysis Run 10/21/2021 3:22 PM View: Appendix IV

Plant Hammond Client: Southern Company Data: Hammond AP-4

	HGWC-102	HGWC-103	HGWC-107
8/31/2016		<0.003	<0.003
10/24/2016		<0.003	
10/25/2016			<0.003
1/31/2017		<0.003	<0.003
5/23/2017		<0.003	
5/24/2017			<0.003
8/10/2017		<0.003	<0.003
11/14/2017		<0.003	<0.003
6/6/2018		0.0022 (J)	<0.003
10/2/2018			0.0011 (J)
10/3/2018		<0.003	
8/22/2019		<0.003	
8/23/2019			<0.003
10/23/2019	<0.003		
1/3/2020	0.00076 (J)		
3/4/2020	<0.003		
3/24/2020	<0.003		
6/18/2020	<0.003		
7/21/2020	<0.003		
8/27/2020	<0.003	<0.003	<0.003
9/24/2020	<0.003		
8/13/2021	<0.003		<0.003
8/16/2021		<0.003	
Mean	0.002751	0.002927	0.002827
Std. Dev.	0.0007467	0.0002412	0.0005729
Upper Lim.	0.003	0.003	0.003
Lower Lim.	0.00076	0.003	0.003

Constituent: Arsenic (mg/L) Analysis Run 10/21/2021 3:22 PM View: Appendix IV

Plant Hammond Client: Southern Company Data: Hammond AP-4

	HGWC-101	HGWC-102	HGWC-109	HGWC-117	HGWC-118
8/31/2016	<0.005		0.0045 (J)	<0.005	<0.005
10/20/2016	<0.005			<0.005	<0.005
10/25/2016			0.003 (J)		
1/27/2017				<0.005	
1/31/2017	<0.005		0.0022 (J)		<0.005
5/23/2017	<0.005			<0.005	<0.005
5/24/2017			0.0012 (J)		
8/10/2017	<0.005		0.0016 (J)	<0.005	<0.005
11/14/2017	<0.005		0.0011 (J)	<0.005	<0.005
6/6/2018	<0.005		0.0018 (J)		
6/7/2018				<0.005	<0.005
10/2/2018			0.0014 (J)		
10/3/2018	<0.005			<0.005	<0.005
8/22/2019	<0.005			<0.005	<0.005
8/23/2019			0.0035 (J)		
10/22/2019			0.0019 (J)	<0.005	<0.005
10/23/2019	<0.005	<0.005			
1/3/2020		0.00065 (J)			
3/4/2020		0.00036 (J)			
3/24/2020		<0.005		0.00037 (J)	
3/25/2020	0.00039 (J)		0.0025 (J)		<0.005
6/18/2020		0.00092 (J)			
7/21/2020		0.00083 (J)			
8/26/2020					<0.005
8/27/2020	<0.005	<0.005	0.0011 (J)	<0.005	
9/24/2020	<0.005	<0.005			
9/25/2020			0.0017 (J)	<0.005	
9/28/2020					<0.005
3/17/2021	<0.005	<0.005	0.0019 (J)		
3/18/2021					0.001 (J)
3/19/2021				<0.005	
8/13/2021		<0.005	0.0019 (J)		<0.005
8/16/2021	<0.005				
8/19/2021				<0.005	
Mean	0.004693	0.003276	0.002087	0.004691	0.004733
Std. Dev.	0.00119	0.00223	0.0009493	0.001195	0.001033
Upper Lim.	0.005	0.005	0.002628	0.005	0.005
Lower Lim.	0.00039	0.00065	0.001457	0.00037	0.001

Constituent: Barium (mg/L) Analysis Run 10/21/2021 3:22 PM View: Appendix IV

Plant Hammond Client: Southern Company Data: Hammond AP-4

	HGWC-101	HGWC-102	HGWC-103	HGWC-105	HGWC-107	HGWC-109	HGWC-117	HGWC-118
8/31/2016	0.0527		0.045	0.067	0.0391	0.0883	0.0547	0.0595
10/20/2016	0.0477						0.0529	0.055
10/24/2016			0.0386					
10/25/2016				0.0745	0.041	0.0831		
1/27/2017							0.049	
1/31/2017	0.0527		0.0365	0.0674	0.0382	0.0844		0.0613
5/23/2017	0.0436		0.0254				0.0352	0.068
5/24/2017				0.0668	0.0377	0.0784		
8/10/2017	0.0419		0.0396	0.067	0.0385	0.0903	0.0457	0.0638
11/14/2017	0.0407		0.0385	0.0643	0.039	0.083	0.0368	0.07
6/6/2018	0.043		0.043	0.068	0.039	0.095		
6/7/2018							0.036	0.059
10/2/2018				0.066	0.038	0.089		
10/3/2018	0.041		0.04				0.047	0.056
8/22/2019	0.043		0.036	0.066			0.036	0.052
8/23/2019					0.038	0.088		
10/22/2019					0.039	0.087	0.049	0.054
10/23/2019	0.043	0.037	0.039	0.066				
1/3/2020		0.036						
3/4/2020		0.033						
3/24/2020		0.024					0.051	
3/25/2020	0.038		0.036	0.074	0.037	0.084		0.06
6/18/2020		0.029						
7/21/2020		0.028						
8/26/2020								0.056
8/27/2020	0.045	0.028	0.038	0.068	0.034	0.083	0.047	
9/24/2020	0.041	0.029	0.036	0.075	0.039			
9/25/2020						0.085	0.05	
9/28/2020								0.046
3/17/2021	0.04	0.031				0.077		
3/18/2021			0.042	0.082	0.041			0.067
3/19/2021							0.058	
8/13/2021		0.026		0.073	0.033	0.08		0.043
8/16/2021	0.037		0.037					
8/19/2021							0.041	
Mean	0.04335	0.0301	0.03804	0.06967	0.0381	0.08503	0.04595	0.05804
Std. Dev.	0.004608	0.004175	0.004409	0.0049	0.002162	0.004732	0.007342	0.007629
Upper Lim.	0.04648	0.03383	0.04095	0.0745	0.03954	0.08824	0.05093	0.06321
Lower Lim.	0.04023	0.02637	0.0354	0.066	0.03685	0.08183	0.04098	0.05287

Constituent: Beryllium (mg/L) Analysis Run 10/21/2021 3:22 PM View: Appendix IV
Plant Hammond Client: Southern Company Data: Hammond AP-4

	HGWC-101	HGWC-103	HGWC-117	HGWC-118
8/31/2016	<0.0005	<0.0005	<0.0005	<0.0005
10/20/2016	<0.0005		<0.0005	<0.0005
10/24/2016		<0.0005		
1/27/2017			<0.0005	
1/31/2017	<0.0005	<0.0005		<0.0005
5/23/2017	7E-05 (J)	<0.0005	<0.0005	<0.0005
8/10/2017	<0.0005	<0.0005	<0.0005	<0.0005
11/14/2017	<0.0005	<0.0005	<0.0005	<0.0005
6/6/2018	5.9E-05 (J)	<0.0005		
6/7/2018			6.8E-05 (J)	<0.0005
10/3/2018	6.5E-05 (J)	<0.0005	<0.0005	<0.0005
8/22/2019	<0.0005	<0.0005	7.9E-05 (J)	<0.0005
10/22/2019			<0.0005	<0.0005
10/23/2019	7.5E-05 (J)	<0.0005		
3/24/2020			<0.0005	
3/25/2020	<0.0005	<0.0005		<0.0005
8/26/2020				<0.0005
8/27/2020	5.7E-05 (J)	5E-05 (J)	4.9E-05 (J)	
9/24/2020	4.8E-05 (J)	8.8E-05 (J)		
9/25/2020			6.6E-05 (J)	
9/28/2020				<0.0005
3/17/2021	5.9E-05 (J)			
3/18/2021		6.1E-05 (J)		9.3E-05 (J)
3/19/2021			8.1E-05 (J)	
8/13/2021				<0.0005
8/16/2021	<0.0005	<0.0005		
8/19/2021			5.6E-05 (J)	
Mean	0.0002955	0.0004133	0.0003266	0.0004729
Std. Dev.	0.0002263	0.0001797	0.00022	0.0001051
Upper Lim.	0.0005	0.0005	0.0005	0.0005
Lower Lim.	5.9E-05	8.8E-05	6.6E-05	9.3E-05

Constituent: Cadmium (mg/L) Analysis Run 10/21/2021 3:22 PM View: Appendix IV
Plant Hammond Client: Southern Company Data: Hammond AP-4

	HGWC-101	HGWC-102	HGWC-103	HGWC-107	HGWC-117
8/31/2016	0.0002 (J)		0.0006 (J)	0.0001 (J)	0.0008 (J)
10/20/2016	0.0003 (J)				0.0008 (J)
10/24/2016			0.0008 (J)		
10/25/2016				8E-05 (J)	
1/27/2017					0.0007 (J)
1/31/2017	0.0001 (J)		0.0006 (J)	9E-05 (J)	
5/23/2017	0.0002 (J)		0.0006 (J)		0.0005 (J)
5/24/2017				0.0001 (J)	
8/10/2017	0.0002 (J)		0.0007 (J)	<0.0005	0.0004 (J)
11/14/2017	<0.0005		0.0007 (J)	<0.0005	0.0005 (J)
6/6/2018	9.5E-05 (J)		0.00073 (J)	0.00012 (J)	
6/7/2018					0.00049 (J)
10/2/2018				0.0001 (J)	
10/3/2018	0.00018 (J)		0.00078 (J)		0.00079 (J)
8/22/2019	0.00014 (J)		0.0008 (J)		0.00064 (J)
8/23/2019				0.00011 (J)	
10/22/2019				<0.0005	0.00068 (J)
10/23/2019	0.0002 (J)	0.00026 (J)	0.00091 (J)		
1/3/2020		0.0002 (J)			
3/4/2020		0.00026 (J)			
3/24/2020		0.00068 (J)			0.00079 (J)
3/25/2020	0.00014 (J)		0.00068 (J)	<0.0005	
6/18/2020		0.00047 (J)			
7/21/2020		0.00083 (J)			
8/27/2020	0.00019 (J)	0.00038 (J)	0.00082 (J)	<0.0005	0.0008 (J)
9/24/2020	0.00014 (J)	0.00032 (J)	0.00076 (J)	<0.0005	
9/25/2020					0.00089 (J)
3/17/2021	<0.0005	0.00094			
3/18/2021			0.00068	<0.0005	
3/19/2021					0.001
8/13/2021		0.00069		<0.0005	
8/16/2021	0.00015 (J)		0.00081		
8/19/2021					0.0012
Mean	0.0001823	0.000503	0.0007313	0.00018	0.000732
Std. Dev.	5.678E-05	0.0002633	9.164E-05	7.792E-05	0.0002113
Upper Lim.	0.0002208	0.0007379	0.0007934	0.00025	0.0008752
Lower Lim.	0.0001439	0.0002681	0.0006692	9E-05	0.0005888

Constituent: Chromium (mg/L) Analysis Run 10/21/2021 3:22 PM View: Appendix IV
Plant Hammond Client: Southern Company Data: Hammond AP-4

	HGWC-101	HGWC-102	HGWC-103	HGWC-105	HGWC-107	HGWC-109	HGWC-117	HGWC-118
8/31/2016	<0.005		<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
10/20/2016	<0.005						<0.005	<0.005
10/24/2016			<0.005					
10/25/2016				<0.005	<0.005	<0.005		
1/27/2017							<0.005	
1/31/2017	<0.005		<0.005	<0.005	<0.005	<0.005		<0.005
5/23/2017	0.0006 (J)		<0.005				<0.005	<0.005
5/24/2017				<0.005	<0.005	<0.005		
8/10/2017	<0.005		<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
11/14/2017	<0.005		<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
6/6/2018	<0.005		<0.005	<0.005	<0.005	<0.005		
6/7/2018							<0.005	<0.005
10/2/2018				<0.005	<0.005	<0.005		
10/3/2018	<0.005		<0.005				<0.005	<0.005
8/22/2019	0.00064 (J)		0.00063 (J)	<0.005			<0.005	<0.005
8/23/2019					<0.005	<0.005		
10/22/2019					<0.005	0.00062 (J)	<0.005	0.00066 (J)
10/23/2019	<0.005	<0.005	0.0015 (J)	0.0004 (J)				
1/3/2020		0.00063 (J)						
3/4/2020		<0.005						
3/24/2020		0.00051 (J)					0.0012 (J)	
3/25/2020	0.00098 (J)		0.00045 (J)	0.0013 (J)	0.00074 (J)	0.0014 (J)		0.00081 (J)
6/18/2020		<0.005						
7/21/2020		<0.005						
8/26/2020								0.00098 (J)
8/27/2020	<0.005	<0.005	0.00069 (J)	<0.005	<0.005	<0.005	0.00057 (J)	
9/24/2020	<0.005	<0.005	0.00081 (J)	0.00064 (J)	<0.005			
9/25/2020						<0.005	0.00067 (J)	
9/28/2020								0.0017 (J)
3/17/2021	0.00075 (J)	<0.005				<0.005		
3/18/2021			0.003 (J)	0.00058 (J)	<0.005			0.0021 (J)
3/19/2021							0.001 (J)	
8/13/2021		<0.005		<0.005	<0.005	<0.005		<0.005
8/16/2021	<0.005		<0.005					
8/19/2021							<0.005	
Mean	0.003865	0.004114	0.003472	0.003861	0.004716	0.004468	0.003896	0.00375
Std. Dev.	0.00195	0.001868	0.002021	0.001963	0.0011	0.001412	0.0019	0.00186
Upper Lim.	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
Lower Lim.	0.00075	0.00063	0.00069	0.00064	0.00074	0.0014	0.001	0.00098

Constituent: Cobalt (mg/L) Analysis Run 10/21/2021 3:22 PM View: Appendix IV Plant Hammond Client: Southern Company Data: Hammond AP-4

	HGWC-101	HGWC-102	HGWC-103	HGWC-105	HGWC-109	HGWC-117	HGWC-118
8/31/2016	0.0033 (J)		0.0018 (J)	0.0014 (J)	0.0023 (J)	0.0035 (J)	<0.005
10/20/2016	0.0025 (J)					0.0045 (J)	<0.005
10/24/2016			0.0018 (J)				
10/25/2016				0.0013 (J)	0.0017 (J)		
1/27/2017						0.0041 (J)	
1/31/2017	0.001 (J)		0.0016 (J)	0.0006 (J)	0.0017 (J)		<0.005
5/23/2017	0.0025 (J)		0.0014 (J)			0.0071 (J)	0.0005 (J)
5/24/2017				0.0007 (J)	0.002 (J)		
8/10/2017	0.0029 (J)		0.0025 (J)	0.0006 (J)	0.0012 (J)	0.0031 (J)	0.0003 (J)
11/14/2017	0.003 (J)		0.002 (J)	0.0005 (J)	0.0014 (J)	0.0062 (J)	0.0004 (J)
6/6/2018	0.0016 (J)		0.0031 (J)	0.00056 (J)	0.0014 (J)		
6/7/2018						0.0083 (J)	<0.005
10/2/2018				<0.005	0.00081 (J)		
10/3/2018	0.0028 (J)		0.0023 (J)			0.005 (J)	<0.005
8/22/2019	<0.005		0.0019 (J)	<0.005		0.012	0.0003 (J)
8/23/2019					0.0027 (J)		
10/22/2019					0.0022 (J)	0.0064	0.00061 (J)
10/23/2019	0.0023 (J)	0.0018 (J)	0.0021 (J)	0.00038 (J)			
1/3/2020		0.0038 (J)					
3/4/2020		0.0021 (J)					
3/24/2020		0.0019 (J)				0.0087	
3/25/2020	0.0021 (J)		0.0022 (J)	0.00047 (J)	0.0022 (J)		<0.005
6/18/2020		0.0012 (J)					
7/21/2020		0.00098 (J)					
8/26/2020							0.00061 (J)
8/27/2020	0.0027 (J)	0.001 (J)	0.0019 (J)	<0.005	0.00086 (J)	0.011	
9/24/2020	0.0021 (J)	0.0011 (J)	0.0019 (J)	0.00044 (J)			
9/25/2020					0.001 (J)	0.011	
9/28/2020							0.00048 (J)
3/17/2021	0.0023 (J)	0.0012 (J)			0.003 (J)		
3/18/2021			0.0021 (J)	0.00045 (J)			0.0012 (J)
3/19/2021						0.011	
8/13/2021		0.00085 (J)		<0.005	0.0011 (J)		<0.005
8/16/2021	0.0026 (J)		0.0022 (J)				
8/19/2021						0.017	
Mean	0.002413	0.001593	0.002053	0.00116	0.001705	0.007927	0.00146
Std. Dev.	0.0005693	0.000888	0.0003998	0.0008864	0.000677	0.00389	0.001028
Upper Lim.	0.002799	0.002228	0.002324	0.0025	0.002163	0.01056	0.0025
Lower Lim.	0.002028	0.0009205	0.001782	0.00045	0.001246	0.005291	0.0004

Constituent: Combined Radium 226 & 228 (pCi/L) Analysis Run 10/21/2021 3:22 PM View: Appendix IV Plant Hammond Client: Southern Company Data: Hammond AP-4

	HGWC-101	HGWC-102	HGWC-103	HGWC-105	HGWC-107	HGWC-109	HGWC-117	HGWC-118
8/31/2016	0.621 (U)		1.62	0.906 (U)	1.2	1.03	1.12	
10/20/2016	1.4						0.803 (U)	1.97
10/24/2016			1.01 (U)					
10/25/2016				1.03	1.11 (U)	1.07		
1/27/2017							1.08 (U)	
1/31/2017	0.906 (U)		0.976 (U)	0.868 (U)	1.45	0.588 (U)		1.03
5/23/2017	0.388 (U)		0.891 (U)				0.624 (U)	0.398 (U)
5/24/2017				0.728 (U)	0.393 (U)	0.593 (U)		
8/10/2017	1.03 (U)		0.601 (U)	1.35	0.84 (U)	0.691 (U)	0.695 (U)	0.938 (U)
11/14/2017	0.769 (U)		0.567 (U)	0.817 (U)	1.01 (U)	0.653 (U)	0.99 (U)	0.335 (U)
6/6/2018	1.28 (U)		0.836 (U)	0.559 (U)	0.365 (U)	0.939 (U)		
6/7/2018							1.04 (U)	0.696 (U)
10/2/2018				0.336 (U)	1.23	0.225 (U)		
10/3/2018	0.302 (U)		0.111 (U)				0.198 (U)	1.6 (U)
8/22/2019	0.474 (U)		0.946 (U)	0.694 (U)			0.333 (U)	0.904 (U)
8/23/2019					1.69	0.47 (U)		
10/22/2019					0.705 (U)	0.545 (U)	0.827 (U)	0.424 (U)
10/23/2019	0.776 (U)	0.858 (U)	0.571 (U)	0.584 (U)				
1/22/2020		1.04 (U)						
3/4/2020		1.32						
3/24/2020		1.23 (U)					0.815 (U)	
3/25/2020	0.603 (U)		0.403 (U)	0.663 (U)	0.673 (U)	0.508 (U)		0.915 (U)
7/21/2020		0.0938 (U)						
8/26/2020								1.19
8/27/2020	0.109 (U)	1.17 (U)	0.37 (U)	0.416 (U)	0.264 (U)	0.989 (U)	0.193 (U)	
9/24/2020	0.625 (U)	1.42	0.804 (U)	1.11 (U)	0.576 (U)			
9/25/2020						0.584 (U)	0.155 (U)	
9/28/2020								0.613 (U)
3/17/2021	0.248 (U)	0.401 (U)				0.556 (U)		
3/18/2021			0.274 (U)	0.252 (U)	0.145 (U)			0.323 (U)
3/19/2021							0.303 (U)	
8/13/2021		0.828 (U)		0.513 (U)	0.815 (U)	0.794 (U)		0.228 (U)
8/16/2021	0.667 (U)		0.493 (U)					
8/19/2021							0.155 (U)	
Mean	0.6799	0.929	0.6982	0.7217	0.8311	0.6823	0.6221	0.826
Std. Dev.	0.365	0.4397	0.3739	0.3001	0.4499	0.2376	0.3655	0.5089
Upper Lim.	0.9272	1.353	0.9516	0.9251	1.136	0.8434	0.8698	1.186
Lower Lim.	0.4325	0.5045	0.4448	0.5184	0.5262	0.5213	0.3744	0.4655
	10/20/2016 10/25/2016 10/25/2016 11/27/2017 1/31/2017 5/23/2017 5/24/2017 8/10/2017 11/14/2017 6/6/2018 6/7/2018 10/2/2018 10/2/2018 10/3/2018 8/22/2019 10/23/2019 11/22/2019 10/23/2019 11/22/2020 3/4/2020 3/24/2020 3/24/2020 8/27/2020 8/27/2020 9/24/2020 9/24/2020 9/25/2020 9/25/2020 9/28/2020 3/17/2021 3/18/2021 3/19/2021 8/13/2021 8/16/2021 8/19/2021 Mean Std. Dev. Upper Lim.	8/31/2016	8/31/2016	8/31/2016	8/31/2016	831/2016 0.621 (U) 1.62 0.906 (U) 1.2 10/20/2016 1.4 1.01 (U) 1.03 1.11 (U) 10/24/2016 1.0 1.01 (U) 1.03 1.11 (U) 10/25/2016 1.0 0.976 (U) 0.868 (U) 1.45 1/27/2017 0.906 (U) 0.976 (U) 0.868 (U) 1.45 5/23/2017 0.388 (U) 0.891 (U) 1.35 0.84 (U) 5/24/2017 1.03 (U) 1.06 (U) 1.35 0.84 (U) 8/10/2017 1.03 (U) 0.601 (U) 1.35 0.84 (U) 11/14/2017 0.769 (U) 0.567 (U) 0.817 (U) 1.01 (U) 6/6/2018 1.28 (U) 0.567 (U) 0.836 (U) 1.01 (U) 6/7/2018 1.28 (U) 0.769 (U) 0.559 (U) 1.23 10/22018 0.302 (U) 0.711 (U) 0.694 (U) 1.23 8/22/2019 0.776 (U) 0.858 (U) 0.571 (U) 0.584 (U) 1/22/2020 1.04 (U) 0.271 (U) 0.584 (U) 0.	8/31/2016 0.821 (U) 1.62 0.996 (U) 1.2 1.03 10/02/2016 1.4 1.01 (U) 1.03 1.11 (U) 1.07 10/25/2016 1.03 1.11 (U) 1.07 1.07 11/27/2017 0.906 (U) 0.976 (U) 0.868 (U) 1.45 0.588 (U) 5/23/2017 0.906 (U) 0.937 (U) 0.868 (U) 1.45 0.588 (U) 5/24/2017 1.03 (U) 0.601 (U) 1.35 0.84 (U) 0.691 (U) 8/10/2018 1.03 (U) 0.567 (U) 0.817 (U) 1.01 (U) 0.653 (U) 8/10/2018 1.28 (U) 0.567 (U) 0.817 (U) 1.01 (U) 0.653 (U) 8/10/2018 1.28 (U) 0.567 (U) 0.817 (U) 1.01 (U) 0.693 (U) 0.939 (U) 8/10/2018 1.28 (U) 0.111 (U) 0.599 (U) 1.23 0.225 (U) 8/10/2018 0.32 (U) 0.111 (U) 0.694 (U) 1.69 0.474 (U) 10/22/2019 1.23 (U) 0.571 (U) 0.584 (U) 0.545	8/31/2016

Constituent: Fluoride (mg/L) Analysis Run 10/21/2021 3:22 PM View: Appendix IV Plant Hammond Client: Southern Company Data: Hammond AP-4

	HGWC-101	HGWC-102	HGWC-103	HGWC-105	HGWC-107	HGWC-109	HGWC-117	HGWC-118
8/31/2016	0.05 (J)		0.06 (J)	0.15 (J)	0.08 (J)	0.12 (J)	0.09 (J)	0.18 (J)
10/20/2016	0.03 (J)						0.11 (J)	0.12 (J)
10/24/2016			0.13 (J)					
10/25/2016				0.09 (J)	0.16 (J)	0.17 (J)		
1/27/2017							0.28 (J)	
1/31/2017	<0.1		<0.1	0.13 (J)	0.16 (J)	0.05 (J)		0.3
5/23/2017	<0.1		0.15 (J)				0.01 (J)	0.14 (J)
5/24/2017				0.07 (J)	0.009 (J)	0.13 (J)		
8/10/2017	<0.1		<0.1	0.03 (J)	<0.1	0.12 (J)	0.1 (J)	0.11 (J)
11/14/2017	<0.1		<0.1	<0.1	<0.1	<0.1	<0.1	0.07 (J)
6/6/2018	<0.1		<0.1	0.074 (J)	0.057 (J)	0.15 (J)		
6/7/2018							<0.1	0.3
10/2/2018				<0.1	<0.1	<0.1		
10/3/2018	<0.1		<0.1				<0.1	0.12 (J)
4/3/2019					<0.1	0.05 (J)		
4/4/2019	<0.1		0.042 (J)	0.03 (J)				
4/5/2019							0.19 (J)	0.33
6/18/2019								0.89
8/22/2019	<0.1		<0.1	<0.1			<0.1	0.07 (J)
8/23/2019					<0.1	0.034 (J)		
10/22/2019					0.047 (J)	0.099 (J)	0.042 (J)	0.087 (J)
10/23/2019	<0.1	0.22 (J)	<0.1	<0.1				
1/3/2020		<0.1						
3/4/2020		<0.1						
3/24/2020		<0.1					<0.1	
3/25/2020	<0.1		<0.1	<0.1	<0.1	0.075 (J)		0.078 (J)
6/18/2020		<0.1						
7/21/2020		<0.1						
8/26/2020								0.072 (J)
8/27/2020	<0.1	<0.1	<0.1	<0.1	<0.1	0.094 (J)	<0.1	
9/24/2020	<0.1	<0.1	<0.1	<0.1	0.064 (J)			
9/25/2020						0.091 (J)	<0.1	
9/28/2020								0.078 (J)
3/17/2021	<0.1	<0.1				0.089 (J)		
3/18/2021			<0.1	<0.1	<0.1			0.079 (J)
3/19/2021							<0.1	
8/13/2021		<0.1		<0.1	<0.1	0.086 (J)		0.075 (J)
8/16/2021	<0.1		<0.1					
8/19/2021							<0.1	
Mean	0.0925	0.112	0.09888	0.09213	0.09231	0.09738	0.1076	0.1823
Std. Dev.	0.02082	0.03795	0.02358	0.03042	0.03732	0.03597	0.05844	0.2024
Upper Lim.	0.1	0.1	0.13	0.13	0.16	0.1208	0.11	0.3
Lower Lim.	0.05	0.1	0.06	0.07	0.057	0.07397	0.09	0.075

Constituent: Lead (mg/L) Analysis Run 10/21/2021 3:22 PM View: Appendix IV
Plant Hammond Client: Southern Company Data: Hammond AP-4

	HGWC-101	HGWC-102	HGWC-103	HGWC-105	HGWC-107	HGWC-109	HGWC-117	HGWC-118
8/31/2016	<0.001		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
10/20/2016	<0.001						<0.001	<0.001
10/24/2016			<0.001					
10/25/2016				<0.001	<0.001	<0.001		
1/27/2017							<0.001	
1/31/2017	<0.001		<0.001	<0.001	<0.001	<0.001		<0.001
5/23/2017	0.0009 (J)		<0.001				<0.001	<0.001
5/24/2017				<0.001	<0.001	<0.001		
8/10/2017	<0.001		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
11/14/2017	<0.001		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
6/6/2018	<0.001		<0.001	<0.001	<0.001	<0.001		
6/7/2018							<0.001	<0.001
10/2/2018				<0.001	<0.001	<0.001		
10/3/2018	<0.001		<0.001				<0.001	<0.001
8/22/2019	<0.001		<0.001	<0.001			<0.001	<0.001
8/23/2019					<0.001	5.8E-05 (J)		
10/22/2019					7.9E-05 (J)	5.4E-05 (J)	0.00016 (J)	0.00025 (J)
10/23/2019	<0.001	<0.001	0.00043 (J)	6.8E-05 (J)				
1/3/2020		<0.001						
3/4/2020		0.00011 (J)						
3/24/2020		<0.001					0.00025 (J)	
3/25/2020	<0.001		7.6E-05 (J)	8.5E-05 (J)	0.00021 (J)	<0.001		0.0001 (J)
6/18/2020		<0.001						
7/21/2020		<0.001						
8/26/2020								0.00036 (J)
8/27/2020	<0.001	<0.001	0.00018 (J)	<0.001	<0.001	<0.001	0.00014 (J)	
9/24/2020	<0.001	<0.001	0.00028 (J)	4.9E-05 (J)	0.00034 (J)			
9/25/2020						<0.001	0.00019 (J)	
9/28/2020								0.00022 (J)
3/17/2021	<0.001	<0.001				<0.001		
3/18/2021			0.00024 (J)	5.8E-05 (J)	9.1E-05 (J)			0.00088 (J)
3/19/2021							0.00038 (J)	
8/13/2021		<0.001		<0.001	<0.001	<0.001		<0.001
8/16/2021	<0.001		<0.001					
8/19/2021							<0.001	
Mean	0.0009933	0.000911	0.0007471	0.0007507	0.0007813	0.0008741	0.0007413	0.0007873
Std. Dev.	2.582E-05	0.0002814	0.0003768	0.000428	0.0003796	0.0003322	0.0003822	0.0003512
Upper Lim.	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Lower Lim.	0.0009	0.001	0.00024	6.8E-05	0.00021	5.8E-05	0.00019	0.00025

Constituent: Lithium (mg/L) Analysis Run 10/21/2021 3:22 PM View: Appendix IV Plant Hammond Client: Southern Company Data: Hammond AP-4

		HGWC-102	HGWC-103	HGWC-105	HGWC-107	HGWC-109	HGWC-117	HGWC-118
8/31/2	2016		<0.03	0.0034 (J)	<0.03	<0.03	0.0024 (J)	<0.03
10/20	/2016						0.0027 (J)	< 0.03
10/24	/2016		<0.03					
10/25	/2016			0.0043 (J)	<0.03	<0.03		
1/27/2	2017						< 0.03	
1/31/2	2017		<0.03	0.0042 (J)	<0.03	<0.03		< 0.03
5/23/2	2017		0.0012 (J)				<0.03	0.0012 (J)
5/24/2	2017			0.0039 (J)	<0.03	0.0012 (J)		
8/10/2	2017		0.0016 (J)	0.004 (J)	<0.03	< 0.03	0.0021 (J)	< 0.03
11/14	/2017		0.0015 (J)	0.0044 (J)	<0.03	<0.03	<0.03	<0.03
6/6/20)18		0.0017 (J)	0.0041 (J)	0.00099 (J)	0.0013 (J)		
6/7/20)18						0.0011 (J)	0.0015 (J)
10/2/2	2018			0.0041 (J)	<0.03	0.0013 (J)		
10/3/2	2018		0.0016 (J)				0.0021 (J)	< 0.03
8/22/2	2019		0.0015 (J)	0.004 (J)			0.0012 (J)	0.0018 (J)
8/23/2	2019				0.00092 (J)	0.0009 (J)		
10/22	/2019				0.00094 (J)	0.00088 (J)	0.0028 (J)	0.0027 (J)
10/23	/2019	0.0012 (J)	0.002 (J)	0.0039 (J)				
1/3/20	020	0.0011 (J)						
3/4/20	020	0.0013 (J)						
3/24/2	2020	0.00084 (J)					0.0029 (J)	
3/25/2	2020		0.0016 (J)	0.0041 (J)	0.00091 (J)	<0.03		0.0017 (J)
6/18/2	2020	0.0013 (J)						
7/21/2	2020	0.0013 (J)						
8/26/2	2020							0.0028 (J)
8/27/2	2020	0.0011 (J)	0.0016 (J)	0.0037 (J)	<0.03	0.0011 (J)	0.0024 (J)	
9/24/2	2020	0.0011 (J)	0.0017 (J)	0.0038 (J)	0.00098 (J)			
9/25/2	2020					0.001 (J)	0.0031 (J)	
9/28/2	2020							0.0022 (J)
3/17/2	2021	0.0012 (J)				<0.03		
3/18/2	2021		0.0018 (J)	0.0042 (J)	0.0011 (J)			0.0029 (J)
3/19/2	2021						0.0035 (J)	
8/13/2	2021	0.0011 (J)		0.0038 (J)	0.00084 (J)	<0.03		0.0017 (J)
8/16/2	2021		0.0016 (J)					
8/19/2	2021						0.0017 (J)	
Mean		0.001154	0.007293	0.003993	0.01645	0.01651	0.007867	0.01323
Std. D	Dev.	0.0001408	0.01175	0.0002549	0.015	0.01493	0.01147	0.01418
Uppei	r Lim.	0.00128	0.03	0.004166	0.03	0.03	0.03	0.03
Lower	r Lim.	0.001028	0.0015	0.003821	0.00092	0.001	0.0017	0.0017

Constituent: Mercury (mg/L) Analysis Run 10/21/2021 3:22 PM View: Appendix IV
Plant Hammond Client: Southern Company Data: Hammond AP-4

	HGWC-101	HGWC-102	HGWC-103	HGWC-105	HGWC-107	HGWC-109	HGWC-117	HGWC-118
8/31/2016	<0.0005		<0.0005	<0.0005	<0.0005	<0.0005	7E-05 (J)	<0.0005
10/20/2016	<0.0005						<0.0005	<0.0005
10/24/2016			<0.0005					
10/25/2016				<0.0005	<0.0005	<0.0005		
1/27/2017							<0.0005	
1/31/2017	9.3E-05 (J)		8E-05 (J)	<0.0005	<0.0005	8E-05 (J)		9E-05 (J)
5/23/2017	<0.0005		<0.0005				<0.0005	<0.0005
5/24/2017				<0.0005	<0.0005	<0.0005		
8/10/2017	<0.0005		<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
11/14/2017	<0.0005		<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
6/6/2018	<0.0005		<0.0005	<0.0005	<0.0005	<0.0005		
6/7/2018							<0.0005	<0.0005
10/2/2018				<0.0005	<0.0005	<0.0005		
10/3/2018	<0.0005		<0.0005				<0.0005	<0.0005
8/22/2019	<0.0005		<0.0005	<0.0005			<0.0005	<0.0005
8/23/2019					<0.0005	<0.0005		
10/23/2019		<0.0005						
1/3/2020		<0.0005						
3/4/2020		<0.0005						
3/24/2020		<0.0005						
6/18/2020		<0.0005						
7/21/2020		<0.0005						
8/26/2020								<0.0005
8/27/2020	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	
9/24/2020		<0.0005						
8/13/2021		0.0001 (J)		0.00022	8.4E-05 (J)	8E-05 (J)		8.1E-05 (J)
8/16/2021	9.9E-05 (J)		0.00027					
8/19/2021							0.0003	
Mean	0.0004265	0.0004556	0.0004409	0.0004745	0.0004622	0.0004236	0.0004427	0.0004246
Std. Dev.	0.0001634	0.0001333	0.0001382	8.442E-05	0.0001254	0.0001699	0.0001374	0.0001677
Upper Lim.	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005
Lower Lim.	9.9E-05	0.0001	0.00027	0.0005	0.0005	8E-05	0.0003	9E-05

Constituent: Selenium (mg/L) Analysis Run 10/21/2021 3:22 PM View: Appendix IV
Plant Hammond Client: Southern Company Data: Hammond AP-4

	HGWC-102
10/23/2019	<0.005
1/3/2020	0.0015 (J)
3/4/2020	<0.005
3/24/2020	<0.005
6/18/2020	<0.005
7/21/2020	<0.005
8/27/2020	<0.005
9/24/2020	<0.005
8/13/2021	<0.005
Mean	0.004611
Std. Dev.	0.001167
Upper Lim.	0.005
Lower Lim.	0.0015

Constituent: Thallium (mg/L) Analysis Run 10/21/2021 3:22 PM View: Appendix IV
Plant Hammond Client: Southern Company Data: Hammond AP-4

	HGWC-102
10/23/2019	<0.001
1/3/2020	8E-05 (J)
3/4/2020	<0.001
3/24/2020	<0.001
6/18/2020	<0.001
7/21/2020	<0.001
8/27/2020	<0.001
9/24/2020	<0.001
8/13/2021	<0.001
Mean	0.0008978
Std. Dev.	0.0003067
Upper Lim.	0.001
Lower Lim.	8E-05

FIGURE I.

Appendix III - Interwell Prediction Limits - Resample Results

Plant Hammond Client: Southern Company Data: Hammond AP-4 Printed 11/18/2021, 7:00 PM Std. Dev. %NDs ND Adj. Constituent Well Upper Lim. Lower Lim. Date Observ. Sig. Bg N Bg Mean Transform Alpha Method 0.03296 20.37 Kaplan-Meier x^(1/3) Boron (mg/L) HGWC-117 0.02002 n/a 9/27/2021 0.67 Yes 54 0.2065 0.0009403 Param Inter 1 of 2 0.0006486 Calcium (mg/L) HGWC-117 73.3 9/27/2021 37.5 No 54 n/a n/a 0 n/a NP Inter (normality) 1 of 2 Chloride (mg/L) HGWC-117 9/27/2021 3.4 No 54 1.066 0.4274 0 0.0009403 Param Inter 1 of 2 6.743 n/a None ln(x) Fluoride (mg/L) HGWC-117 0.166 n/a 9/27/2021 0.1ND No 60 0.07488 0.04656 26.67 Kaplan-Meier No 0.0009403 Param Inter 1 of 2 pH (s.u.) HGWC-117 7.54 5.47 9/27/2021 5.66 No 60 n/a n/a 0 n/a n/a 0.001038 NP Inter (normality) 1 of 2 5.556 None HGWC-117 18.71 n/a 9/27/2021 104 Yes 54 0.7984 1.08 0.0009403 Param Inter 1 of 2 Sulfate (mg/L) ln(x) Total Dissolved Solids (mg/L) HGWC-117 302.5 9/27/2021 242 No 53 4.997 0.8691 0 None x^(1/3) 0.0009403 Param Inter 1 of 2

Sanitas™ v.9.6.31 Groundwater Stats Consulting, UC

Exceeds Limit: HGWC-117

Prediction Limit Interwell Parametric

Background Data Summary (based on cube root transformation) (after Kaplan-Meier Adjustment): Mean=0.2065, Std. Dev.=0.03296, n=54, 20.37% NDs. Normality test was disabled. Kappa = 1.972 (c=7, w=8, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.0009403. Assumes 7 future values.

Constituent: Boron Analysis Run 11/18/2021 6:57 PM View: Interwell PLs
Plant Hammond Client: Southern Company Data: Hammond AP-4

8/31/16

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG

Within Limit Prediction Limit Interwell Non-parametric

90
72
HGWC-117
18
Limit = 73.3

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 54 background values. Annual per-constituent alpha = 0.01033. Individual comparison alpha = 0.0006486 (1 of 2). Assumes 7 future values.

9/5/17 9/11/18 9/16/19 9/21/20 9/27/21

Constituent: Calcium Analysis Run 11/18/2021 6:58 PM View: Interwell PLs
Plant Hammond Client: Southern Company Data: Hammond AP-4

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. **Prediction Limit** Within Limit Interwell Parametric 0.3 0.24 **HGWC-117** 0.18 0.12 Ф—о—а 0.06 Limit = 0.166 0 9/5/17 9/11/18 9/16/19 9/21/20 9/27/21 8/31/16

Background Data Summary (after Kaplan-Meier Adjustment): Mean=0.07488, Std. Dev.=0.04656, n=60, 26.67% NDs. Normality test: Shapiro Francia @alpha = 0.01, calculated = 0.9501, critical = 0.945. Kappa = 1.958 (c=7, w=8, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.0009403. Assumes 7 future values.

Background Data Summary (based on natural log transformation): Mean=1.066, Std. Dev.=0.4274, n=54. Normality test: Shapiro Francia @alpha = 0.01, calculated = 0.9449, critical = 0.939. Kappa = 1.972 (c=7, w=8, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.0009403. Assumes 7 future values.

Constituent: Chloride Analysis Run 11/18/2021 6:58 PM View: Interwell PLs
Plant Hammond Client: Southern Company Data: Hammond AP-4

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.01 alpha level. Limits are highest and lowest of 60 background values. Annual perconstituent alpha = 0.01655. Individual comparison alpha = 0.001038 (1 of 2). Assumes 7 future values.

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UC

Background Data Summary (based on natural log transformation): Mean=0.7984, Std. Dev.=1.08, n=54, 5.556% NDs. Normality test: Shapiro Francia @alpha = 0.01, calculated = 0.9408, critical = 0.939. Kappa = 1.972 (c=7, w=8, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.0009403. Assumes 7 future values.

Constituent: Sulfate Analysis Run 11/18/2021 6:58 PM View: Interwell PLs
Plant Hammond Client: Southern Company Data: Hammond AP-4

Sanitas™ v.9.6.31 Groundwater Stats Consulting. UG

Background Data Summary (based on cube root transformation): Mean=4.997, Std. Dev.=0.8691, n=53. Normality test: Shapiro Francia @alpha = 0.01, calculated = 0.9406, critical = 0.938. Kappa = 1.975 (c=7, w=8, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.000403. Assumes 7 future values.

Constituent: Total Dissolved Solids Analysis Run 11/18/2021 6:58 PM View: Interwell PLs
Plant Hammond Client: Southern Company Data: Hammond AP-4

Constituent: Boron (mg/L) Analysis Run 11/18/2021 7:00 PM View: Interwell PLs Plant Hammond Client: Southern Company Data: Hammond AP-4

	HGWA-111 (bg)	HGWA-112 (bg)	HGWA-113 (bg)	HGWC-117	HGWA-47 (bg)	HGWA-48D (bg)
8/30/2016	<0.04	<0.04	<0.04			
8/31/2016				0.821		
10/20/2016	0.016 (J)			0.956		
10/24/2016		0.0367 (J)	0.0226 (J)			
1/25/2017	0.0095 (J)	0.0075 (J)	0.009 (J)			
1/27/2017				0.99		
5/23/2017		0.0073 (J)	0.0082 (J)	0.438		
5/24/2017	0.0094 (J)					
8/10/2017	<0.04	<0.04	0.0061 (J)	0.821		
11/13/2017	0.0103 (J)	0.0089 (J)				
11/14/2017			0.012 (J)	0.536		
6/4/2018	0.0065 (J)	0.007 (J)				
6/5/2018			0.0085 (J)			
6/7/2018				0.5		
10/1/2018	0.0054 (J)	<0.04	0.0042 (J)			
10/3/2018				0.85		
4/1/2019	0.0076 (J)					
4/2/2019		0.0043 (J)	0.0059 (J)			
4/5/2019				1 (X)		
10/21/2019	0.0097 (J)					
10/22/2019		0.016 (J)	0.01 (J)	1		
3/24/2020	0.011 (J)	0.012 (J)		1		
4/9/2020			0.012 (J)			
9/18/2020	0.011 (J)	0.008 (J)			0.0082 (J)	0.015 (J)
9/22/2020			0.021 (J)			
9/25/2020				1.1		
11/10/2020					0.0064 (J)	
11/11/2020						0.014 (J)
12/15/2020					<0.04	0.0083 (J)
1/19/2021					0.015 (J)	0.015 (J)
3/11/2021	0.01 (J)					
3/12/2021		0.0061 (J)			0.0067 (J)	0.012 (J)
3/16/2021			0.011 (J)			
3/19/2021				1.5		
8/12/2021	<0.04	<0.04	<0.04		<0.04	0.012 (J)
8/19/2021				0.78		
9/27/2021				0.67		

Constituent: Calcium (mg/L) Analysis Run 11/18/2021 7:00 PM View: Interwell PLs
Plant Hammond Client: Southern Company Data: Hammond AP-4

	HGWA-111 (bg)	HGWA-112 (bg)	HGWA-113 (bg)	HGWC-117	HGWA-48D (bg)	HGWA-47 (bg)
8/30/2016	40.3	6.69	6.72			
8/31/2016				63.4		
10/20/2016	38.7			64.4		
10/24/2016		6.25	6.4			
1/25/2017	44.6	6.58	6.87			
1/27/2017				68.6		
5/23/2017		6.4	7.13	32		
5/24/2017	34.8					
8/10/2017	48.6	6.54	6.71	78.9		
11/13/2017	17.1	6.26				
11/14/2017			7.4	46.9		
6/4/2018	30.1	7.4				
6/5/2018			7.4			
6/7/2018				37.7		
10/1/2018	14.2 (J)	5.8	6.2			
10/3/2018				68		
4/1/2019	58.4					
4/2/2019		6.7	7.4			
4/5/2019				70		
6/18/2019				36.3		
10/21/2019	51					
10/22/2019		6.3	7.2	70.9		
3/24/2020	61.2	7		68		
4/9/2020			8.3			
9/18/2020	32.2	6.5			51.8	62.2
9/22/2020			7.9			
9/25/2020				72.8		
11/10/2020						73.3
11/11/2020					61.3	
12/15/2020					61.3	72.5
1/19/2021					58.9	72.5
3/11/2021	53.2					
3/12/2021		6.9			57.5	69.2
3/16/2021			8.6			
3/19/2021				87.3		
8/12/2021	45.4	6.9	8.4		59.5	71.2
8/19/2021				40.9		
9/27/2021				37.5		

Constituent: Chloride (mg/L) Analysis Run 11/18/2021 7:00 PM View: Interwell PLs
Plant Hammond Client: Southern Company Data: Hammond AP-4

		HGWA-111 (bg)	HGWA-112 (bg)	HGWA-113 (bg)	HGWC-117	HGWA-47 (bg)	HGWA-48D (bg)
8	/30/2016	3.3	5.4	2			
8/	/31/2016				7.1		
10	0/20/2016	3.2			7.7		
10	0/24/2016		5.2	1.9			
1/	/25/2017	2.7	5	1.9			
1/	/27/2017				7.8		
5	/23/2017		5.1	1.6	3.6		
5	/24/2017	3					
8	/10/2017	2.8	5.2	1.7	5.9		
1	1/13/2017	2.5	5.5				
1	1/14/2017			2	4		
6	/4/2018	2.6	5.3				
6	/5/2018			1.7			
6	/7/2018				3.6		
10	0/1/2018	2.2	5.6	1.6			
10	0/3/2018				7.6		
4	/1/2019	4					
4	/2/2019		5.7	1.8			
4	/5/2019				8.9		
10	0/21/2019	3.9					
10	0/22/2019		5.5	1.9	12.1		
3/	/24/2020	3.6	5.2		12.5		
4	/9/2020			1.4			
	/18/2020	2.6	5.2			2.7	2.6
	/22/2020			1.5			
9/	/25/2020				16.1		
1	1/10/2020					2.7	
1	1/11/2020						2.6
13	2/15/2020					2.9	2.7
1/	/19/2021					2.8	2.7
3/	/11/2021	3.4					
3/	/12/2021		5.3			2.7	2.6
3/	/16/2021			1.6			
	/19/2021				24.9		
8/	/12/2021	2.5	4.4	1.5		2.3	2.2
8/	/19/2021				4		
9/	/27/2021				3.4		

Constituent: Fluoride (mg/L) Analysis Run 11/18/2021 7:00 PM View: Interwell PLs
Plant Hammond Client: Southern Company Data: Hammond AP-4

	HGWA-111 (bg)	HGWA-112 (bg)	HGWA-113 (bg)	HGWC-117	HGWA-47 (bg)	HGWA-48D (bg)	
8/30/2016	0.07 (J)	0.04 (J)	0.2 (J)				
8/31/2016				0.09 (J)			
10/20/2016	0.07 (J)			0.11 (J)			
10/24/2016		0.05 (J)	0.16 (J)				
1/25/2017	0.14 (J)	<0.1	0.15 (J)				
1/27/2017				0.28 (J)			
5/23/2017		0.004 (J)	0.18 (J)	0.01 (J)			
5/24/2017	0.02 (J)						
8/10/2017	0.06 (J)	0.03 (J)	0.19 (J)	0.1 (J)			
11/13/2017	<0.1	<0.1					
11/14/2017			0.16 (J)	<0.1			
6/4/2018	0.032 (J)	<0.1					
6/5/2018			0.18 (J)				
6/7/2018				<0.1			
10/1/2018	<0.1	<0.1	0.078 (J)				
10/3/2018				<0.1			
4/1/2019	0.042 (J)						
4/2/2019		<0.1	0.18 (J)				
4/5/2019				0.19 (J)			
8/21/2019	0.048 (J)	<0.1	0.11 (J)				
8/22/2019				<0.1			
10/21/2019	0.12 (J)						
10/22/2019		0.05 (J)	0.18 (J)	0.042 (J)			
3/24/2020	0.076 (J)	<0.1		<0.1			
4/9/2020			0.14 (J)				
8/25/2020	0.052 (J)	<0.1	0.17				
8/27/2020				<0.1			
9/18/2020	<0.1	<0.1			0.067 (J)	0.098 (J)	
9/22/2020			0.16				
9/25/2020				<0.1			
11/10/2020					0.065 (J)		
11/11/2020						0.083 (J)	
12/15/2020					0.064 (J)	0.081 (J)	
1/19/2021					0.057 (J)	0.079 (J)	
3/11/2021	0.057 (J)						
3/12/2021		<0.1			0.062 (J)	0.085 (J)	
3/16/2021			0.18				
3/19/2021				<0.1			
8/12/2021	<0.1	<0.1	0.16		<0.1	0.064 (J)	
8/19/2021				<0.1			
9/27/2021				<0.1			

Constituent: pH (s.u.) Analysis Run 11/18/2021 7:00 PM View: Interwell PLs
Plant Hammond Client: Southern Company Data: Hammond AP-4

	HGWA-111 (bg)	HGWA-112 (bg)	HGWA-113 (bg)	HGWC-117	HGWA-47 (bg)	HGWA-48D (bg)
8/30/2016	6.89	5.77	5.99			
8/31/2016				6.07		
10/20/2016	6.73			6		
10/24/2016		5.61	5.84			
1/25/2017	7.02	5.68	6.04			
1/27/2017				6.2		
5/23/2017		5.7	6.01	5.27		
5/24/2017	6.44					
8/10/2017	6.79	5.59	5.98	6.27		
11/13/2017	5.94	5.56				
11/14/2017			6.16	5.4		
6/4/2018	6.12	5.62				
6/5/2018			5.86			
6/7/2018				5.29		
10/1/2018	5.92	5.62	5.94			
10/3/2018				6.08		
4/1/2019	7.09					
4/2/2019		5.47	6			
4/5/2019				5.99		
8/21/2019	6.6	5.8	6.05			
8/22/2019				5.53		
10/21/2019	7.02					
10/22/2019		5.7	5.98	6.17		
3/24/2020	7.37	5.64		5.99		
4/9/2020			6.08			
8/25/2020	6.7	5.53	5.95			
8/27/2020				5.92		
9/18/2020	6.46	5.58			7.54	7.5
9/22/2020			6.1			
9/25/2020				6.01		
11/10/2020					7.34	
11/11/2020						7.4
12/15/2020					7.27	7.39
1/19/2021					7.32	7.4
3/11/2021	7.2					
3/12/2021		5.6			7.52	7.51
3/16/2021			6.14			
3/19/2021				6.14		
8/12/2021	6.67	5.5	6.08		7.38	7.44
8/19/2021				6.04		
9/27/2021				5.66		

Constituent: Sulfate (mg/L) Analysis Run 11/18/2021 7:00 PM View: Interwell PLs Plant Hammond Client: Southern Company Data: Hammond AP-4

	HGWA-111 (bg)	HGWA-112 (bg)	HGWA-113 (bg)	HGWC-117	HGWA-48D (bg)	HGWA-47 (bg)
8/30/2016	1.6	0.63 (J)	14			
8/31/2016				150		
10/20/2016	1.6			150		
10/24/2016		0.62 (J)	11			
1/25/2017	1.6	0.62 (J)	12			
1/27/2017				150		
5/23/2017		0.55 (J)	12	110		
5/24/2017	1.4					
8/10/2017	1.6	0.66 (J)	11	140		
11/13/2017	1.3	0.61 (J)				
11/14/2017			11	110		
6/4/2018	1.4	0.73 (J)				
6/5/2018			9.9			
6/7/2018				103		
10/1/2018	1	0.52 (J)	6.7			
10/3/2018				169		
4/1/2019	1.7					
4/2/2019		0.78 (J)	8.7			
4/5/2019				141		
6/18/2019				116		
10/21/2019	1.8					
10/22/2019		0.6 (J)	6.8	133		
3/24/2020	1.6	<1		129		
4/9/2020			6.6			
9/18/2020	1	<1			9.5	3.5
9/22/2020			5.3			
9/25/2020				146		
11/10/2020						2.3
11/11/2020					4.5	
12/15/2020					4.2	2.4
1/19/2021					3.9	2.6
3/11/2021	1.5					
3/12/2021		0.52 (J)			4.7	1.9
3/16/2021			7.7			
3/19/2021				162		
8/12/2021	1.3	<1	10		4.3	1.4
8/19/2021				108		
9/27/2021				104		

Constituent: Total Dissolved Solids (mg/L) Analysis Run 11/18/2021 7:00 PM View: Interwell PLs Plant Hammond Client: Southern Company Data: Hammond AP-4

	HGWA-111 (bg)	HGWA-112 (bg)	HGWA-113 (bg)	HGWC-117	HGWA-47 (bg)	HGWA-48D (bg)
8/30/2016	172	76	77			
8/31/2016				381		
10/20/2016	108			319		
10/24/2016		65	111			
1/25/2017	345	152 (o)	155			
1/27/2017				407		
5/23/2017		52	74	258		
5/24/2017	126					
8/10/2017	174	60	94	359		
11/13/2017	158	75				
11/14/2017			89	310		
6/4/2018	131	70				
6/5/2018			92			
6/7/2018				223		
10/1/2018	101	76	91			
10/3/2018				337		
4/1/2019	213					
4/2/2019		69	94			
4/5/2019				334		
6/18/2019				254		
10/21/2019	187					
10/22/2019		81	95	348		
3/24/2020	207	52		331		
4/9/2020			48			
9/18/2020	139	62			195	224
9/22/2020			84			
9/25/2020				340		
11/10/2020					229	
11/11/2020						221
12/15/2020					233	239
1/19/2021					199	224
3/11/2021	207					
3/12/2021		56			217	204
3/16/2021			99			
3/19/2021				371		
8/12/2021	157	63	92		212	234
8/19/2021				253		
9/27/2021				242		

FIGURE J.

Confidence Interval Summary Table - Resample Significant Results

Plant Hammond Client: Southern Company Data: Hammond AP-4 Printed 11/18/2021, 2:42 PM

 Constituent
 Well
 Upper Lim.
 Lower Lim.
 Compliance
 Sig.
 N
 Sid. Dev.
 %NDs
 Transform
 Alpha
 Method

 Cobalt (mg/L)
 HGWC-117
 0.01107
 0.005667
 0.005
 Yes
 16
 0.004153
 0
 No
 0.01
 Param.

Confidence Interval Summary Table - Resample All Results

		Plant Hammond	Client: Souther	n Company	Data: H	ammo	nd AP-4 Printed	11/18/20	21, 2:42 PM		
Constituent	Well	Upper Lim.	Lower Lim.	Compliance	Sig.	<u>N</u>	Std. Dev.	%NDs	Transform	<u>Alpha</u>	Method
Arsenic (mg/L)	HGWC-117	0.005	0.00037	0.01	No	16	0.001157	93.75	No	0.01	NP (NDs)
Barium (mg/L)	HGWC-117	0.05025	0.04066	2	No	16	0.007366	0	No	0.01	Param.
Beryllium (mg/L)	HGWC-117	0.0005	0.000066	0.004	No	16	0.0002169	62.5	No	0.01	NP (NDs)
Cadmium (mg/L)	HGWC-117	0.0008863	0.0006087	0.005	No	16	0.0002133	0	No	0.01	Param.
Chromium (mg/L)	HGWC-117	0.005	0.001	0.1	No	16	0.001856	75	No	0.01	NP (NDs)
Cobalt (mg/L)	HGWC-117	0.01107	0.005667	0.005	Yes	16	0.004153	0	No	0.01	Param.
Combined Radium 226 & 228 (pCi/L)	HGWC-117	0.9055	0.4918	5	No	16	0.3601	0	x^2	0.01	Param.
Fluoride (mg/L)	HGWC-117	0.11	0.1	4	No	17	0.05662	58.82	No	0.01	NP (NDs)
Lead (mg/L)	HGWC-117	0.001	0.00019	0.0016	No	16	0.0003748	68.75	No	0.01	NP (NDs)
Lithium (mg/L)	HGWC-117	0.0035	0.0016	0.03	No	16	0.01925	18.75	No	0.01	NP (normality)
Mercury (mg/L)	HGWC-117	0.0003	0.00007	0.002	No	12	0.00004938	83.33	No	0.01	NP (NDs)

Non-Parametric Confidence Interval

Constituent: Arsenic Analysis Run 11/18/2021 2:40 PM View: Appendix IV
Plant Hammond Client: Southern Company Data: Hammond AP-4

Sanitas™ v.9.6.31 . UG

Non-Parametric Confidence Interval Compliance Limit is not exceeded. Per-well alpha = 0.01.

Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Barium Analysis Run 11/18/2021 2:40 PM View: Appendix IV
Plant Hammond Client: Southern Company Data: Hammond AP-4

Sanitas™ v.9.6.31 . UG

Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Non-Parametric Confidence Interval

Constituent: Chromium Analysis Run 11/18/2021 2:40 PM View: Appendix IV Plant Hammond Client: Southern Company Data: Hammond AP-4

Sanitas™ v.9.6.31 . UG

Parametric Confidence Interval

Parametric Confidence Interval

Constituent: Cobalt Analysis Run 11/18/2021 2:40 PM View: Appendix IV Plant Hammond Client: Southern Company Data: Hammond AP-4

Sanitas™ v.9.6.31 . UG

Non-Parametric Confidence Interval

Sanitas™ v.9.6.31 . UG

Non-Parametric Confidence Interval

Constituent: Lead Analysis Run 11/18/2021 2:40 PM View: Appendix IV
Plant Hammond Client: Southern Company Data: Hammond AP-4

Sanitas™ v.9.6.31 . UG

Non-Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01.

Constituent: Mercury Analysis Run 11/18/2021 2:40 PM View: Appendix IV
Plant Hammond Client: Southern Company Data: Hammond AP-4

Sanitas™ v.9.6.31 . UG

Non-Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01.

Constituent: Lithium Analysis Run 11/18/2021 2:40 PM View: Appendix IV
Plant Hammond Client: Southern Company Data: Hammond AP-4

Constituent: Arsenic (mg/L) Analysis Run 11/18/2021 2:42 PM View: Appendix IV

Plant Hammond Client: Southern Company Data: Hammond AP-4

	HGWC-117
8/31/2016	<0.005
10/20/2016	<0.005
1/27/2017	<0.005
5/23/2017	<0.005
8/10/2017	<0.005
11/14/2017	<0.005
6/7/2018	<0.005
10/3/2018	<0.005
8/22/2019	<0.005
10/22/2019	<0.005
3/24/2020	0.00037 (J)
8/27/2020	<0.005
9/25/2020	<0.005
3/19/2021	<0.005
8/19/2021	<0.005
9/27/2021	<0.005
Mean	0.004711
Std. Dev.	0.001157
Upper Lim.	0.005
Lower Lim.	0.00037

Constituent: Barium (mg/L) Analysis Run 11/18/2021 2:42 PM View: Appendix IV
Plant Hammond Client: Southern Company Data: Hammond AP-4

	HGWC-117
8/31/2016	0.0547
10/20/2016	0.0529
1/27/2017	0.049
5/23/2017	0.0352
8/10/2017	0.0457
11/14/2017	0.0368
6/7/2018	0.036
10/3/2018	0.047
8/22/2019	0.036
10/22/2019	0.049
3/24/2020	0.051
8/27/2020	0.047
9/25/2020	0.05
3/19/2021	0.058
8/19/2021	0.041
9/27/2021	0.038
Mean	0.04546
Std. Dev.	0.007366
Upper Lim.	0.05025
Lower Lim.	0.04066

Constituent: Beryllium (mg/L) Analysis Run 11/18/2021 2:42 PM View: Appendix IV
Plant Hammond Client: Southern Company Data: Hammond AP-4

8/31/2016 <0.0005 10/20/2016 <0.0005 1/27/2017 <0.0005	
1/27/2017 <0.0005	
5/23/2017 <0.0005	
8/10/2017 <0.0005	
11/14/2017 <0.0005	
6/7/2018 6.8E-05 (J)
10/3/2018 <0.0005	
8/22/2019 7.9E-05 (J)
10/22/2019 <0.0005	
3/24/2020 <0.0005	
8/27/2020 4.9E-05 (J)
9/25/2020 6.6E-05 (J)
3/19/2021 8.1E-05 (J)
8/19/2021 5.6E-05 (J)
9/27/2021 <0.0005	
Mean 0.000337	4
Std. Dev. 0.000216	9
Upper Lim. 0.0005	
Lower Lim. 6.6E-05	

Constituent: Cadmium (mg/L) Analysis Run 11/18/2021 2:42 PM View: Appendix IV
Plant Hammond Client: Southern Company Data: Hammond AP-4

	HGWC-117
8/31/2016	0.0008 (J)
10/20/2016	0.0008 (J)
1/27/2017	0.0007 (J)
5/23/2017	0.0005 (J)
8/10/2017	0.0004 (J)
11/14/2017	0.0005 (J)
6/7/2018	0.00049 (J)
10/3/2018	0.00079 (J)
8/22/2019	0.00064 (J)
10/22/2019	0.00068 (J)
3/24/2020	0.00079 (J)
8/27/2020	0.0008 (J)
9/25/2020	0.00089 (J)
3/19/2021	0.001
8/19/2021	0.0012
9/27/2021	0.00098
Mean	0.0007475
Std. Dev.	0.0002133
Upper Lim.	0.0008863
Lower Lim.	0.0006087

Constituent: Chromium (mg/L) Analysis Run 11/18/2021 2:42 PM View: Appendix IV

Plant Hammond Client: Southern Company Data: Hammond AP-4

	HGWC-117
8/31/2016	<0.005
10/20/2016	<0.005
1/27/2017	<0.005
5/23/2017	<0.005
8/10/2017	<0.005
11/14/2017	<0.005
6/7/2018	<0.005
10/3/2018	<0.005
8/22/2019	<0.005
10/22/2019	<0.005
3/24/2020	0.0012 (J)
8/27/2020	0.00057 (J)
9/25/2020	0.00067 (J)
3/19/2021	0.001 (J)
8/19/2021	<0.005
9/27/2021	<0.005
Mean	0.003965
Std. Dev.	0.001856
Upper Lim.	0.005
Lower Lim.	0.001

Constituent: Cobalt (mg/L) Analysis Run 11/18/2021 2:42 PM View: Appendix IV Plant Hammond Client: Southern Company Data: Hammond AP-4

	HGWC-117
8/31/2016	0.0035 (J)
10/20/2016	0.0045 (J)
1/27/2017	0.0041 (J)
5/23/2017	0.0071 (J)
8/10/2017	0.0031 (J)
11/14/2017	0.0062 (J)
6/7/2018	0.0083 (J)
10/3/2018	0.005 (J)
8/22/2019	0.012
10/22/2019	0.0064
3/24/2020	0.0087
8/27/2020	0.011
9/25/2020	0.011
3/19/2021	0.011
8/19/2021	0.017
9/27/2021	0.015
Mean	0.008369
Std. Dev.	0.004153
Upper Lim.	0.01107
Lower Lim.	0.005667

Constituent: Combined Radium 226 & 228 (pCi/L) Analysis Run 11/18/2021 2:42 PM View: Appendix IV

Plant Hammond Client: Southern Company Data: Hammond AP-4

HGWC-117
1.12
0.803 (U)
1.08 (U)
0.624 (U)
0.695 (U)
0.99 (U)
1.04 (U)
0.198 (U)
0.333 (U)
0.827 (U)
0.815 (U)
0.193 (U)
0.155 (U)
0.303 (U)
0.155 (U)
0.905
0.6398
0.3601
0.9055
0.4918

Constituent: Fluoride (mg/L) Analysis Run 11/18/2021 2:42 PM View: Appendix IV

Plant Hammond Client: Southern Company Data: Hammond AP-4

	HGWC-117
8/31/2016	0.09 (J)
10/20/2016	0.11 (J)
1/27/2017	0.28 (J)
5/23/2017	0.01 (J)
8/10/2017	0.1 (J)
11/14/2017	<0.1
6/7/2018	<0.1
10/3/2018	<0.1
4/5/2019	0.19 (J)
8/22/2019	<0.1
10/22/2019	0.042 (J)
3/24/2020	<0.1
8/27/2020	<0.1
9/25/2020	<0.1
3/19/2021	<0.1
8/19/2021	<0.1
9/27/2021	<0.1
Mean	0.1072
Std. Dev.	0.05662
Upper Lim.	0.11
Lower Lim.	0.1

Constituent: Lead (mg/L) Analysis Run 11/18/2021 2:42 PM View: Appendix IV
Plant Hammond Client: Southern Company Data: Hammond AP-4

	HGWC-117
8/31/2016	<0.001
10/20/2016	<0.001
1/27/2017	<0.001
5/23/2017	<0.001
8/10/2017	<0.001
11/14/2017	<0.001
6/7/2018	<0.001
10/3/2018	<0.001
8/22/2019	<0.001
10/22/2019	0.00016 (J)
3/24/2020	0.00025 (J)
8/27/2020	0.00014 (J)
9/25/2020	0.00019 (J)
3/19/2021	0.00038 (J)
8/19/2021	<0.001
9/27/2021	<0.001
Mean	0.0007575
Std. Dev.	0.0003748
Upper Lim.	0.001
Lower Lim.	0.00019

Constituent: Lithium (mg/L) Analysis Run 11/18/2021 2:42 PM View: Appendix IV

Plant Hammond Client: Southern Company Data: Hammond AP-4

	HGWC-117
8/31/2016	0.0024 (J)
10/20/2016	0.0027 (J)
1/27/2017	<0.05
5/23/2017	<0.05
8/10/2017	0.0021 (J)
11/14/2017	<0.05
6/7/2018	0.0011 (J)
10/3/2018	0.0021 (J)
8/22/2019	0.0012 (J)
10/22/2019	0.0028 (J)
3/24/2020	0.0029 (J)
8/27/2020	0.0024 (J)
9/25/2020	0.0031 (J)
3/19/2021	0.0035 (J)
8/19/2021	0.0017 (J)
9/27/2021	0.0016 (J)
Mean	0.01123
Std. Dev.	0.01925
Upper Lim.	0.0035
Lower Lim.	0.0016

Constituent: Mercury (mg/L) Analysis Run 11/18/2021 2:42 PM View: Appendix IV
Plant Hammond Client: Southern Company Data: Hammond AP-4

	HGWC-117
8/31/2016	7E-05 (J)
10/20/2016	<0.0002
1/27/2017	<0.0002
5/23/2017	<0.0002
8/10/2017	<0.0002
11/14/2017	<0.0002
6/7/2018	<0.0002
10/3/2018	<0.0002
8/22/2019	<0.0002
8/27/2020	<0.0002
8/19/2021	0.0003
9/27/2021	<0.0002
Mean	0.0001975
Std. Dev.	4.938E-05
Upper Lim.	0.0003
Lower Lim.	7E-05

APPENDIX E

Alternate Source Demonstration - Cobalt

Prepared for

Georgia Power Company

241 Ralph McGill Blvd NE Atlanta, Georgia 30308

ALTERNATE SOURCE DEMONSTRATION – COBALT GEORGIA POWER COMPANY PLANT HAMMOND ASH POND 4

Prepared by

engineers | scientists | innovators

1255 Roberts Boulevard, Suite 200 Kennesaw, Georgia 30144

Project Number GW6581

October 2021

Plant Hammond Ash Pond 4 (AP-4)

October 28, 2021

Herwig Goldemund, Ph.D.

Principal

Whitney Law, P.E.
Project Manager

Certification Statement

Alternate Source Demonstration – Cobalt Plant Hammond Ash Pond 4 October 28, 2021

I hereby certify that the facts used to prepare this Alternate Source Demonstration for Georgia Power Company – Plant Hammond Ash Pond 4 are accurate pursuant to the requirements stipulated in 40 CFR 257.95(g)(3)(ii) and Georgia regulations stipulated in Rule 391-3-4-.10(6) of the Georgia Administrative Code, which incorporates 40 CFR 257.95(g)(3)(ii) by reference.

TABLE OF CONTENTS

1.	INT	RODUCTION 1
	1.1	Purpose
	1.2	Summary of ASD
	1.3	Site Description
		1.3.1 Operations
		1.3.2 Geology and Hydrogeology
	1.4	Groundwater Monitoring and Basis of Statistically Significant Levels 3
2.	ALT	TERNATE SOURCE DEMONSTRATION4
	2.1	Isolated Detection of Cobalt
	2.2	No Statistical Positive Correlation between Co and Appendix III Parameters
	2.3	Lack of Cobalt Detections Above GWPS in HGWC-117A
	2.4	Potential Sampling Issues Related to Use of Dedicated Bladder Pumps 5
3.	CO	NCLUSIONS7
4.	REF	FERENCES9

LIST OF TABLES

Table 1	Well and Piezometer Network Details
Table 2	Summary of Groundwater Analytical Data
Table 3	Pearson's Correlation Coefficients between Cobalt and Appendix III
	Concentrations Reported in HGWC-117

LIST OF FIGURES

Figure 1	Groundwater Monitoring Network Map
Figure 2	Potentiometric Surface Map and Co Concentrations – August 2021
Figure 3	Turbidity Levels Recorded During Sample Collection in HGWC-117

LIST OF APPENDICES

Appendix A Boring and Well Construction Logs for HGWC-117 and HGWC-117A

LIST OF ACRONYMS

AP-4 Ash Pond 4

ASD alternate source demonstration
CCR Coal Combustion Residual
CFR Code of Federal Regulations

Co cobalt

GA EPD Georgia Environmental Protection Division

GCL geosynthetic clay liner Georgia Power Georgia Power Company

GWPS groundwater protection standard

mg/L milligrams per liter RL reporting limit

SSL statistically significant level

1. INTRODUCTION

1.1 Purpose

This document presents an alternate source demonstration (ASD) for the statistically significant level (SSL) detected in groundwater compliance monitoring well HGWC-117 above the state groundwater protection standard (GWPS) for cobalt (Co) of 0.005 milligrams per liter (mg/L). HGWC-117 is associated with the coal combustion residual (CCR) unit Ash Pond 4 (AP-4) located at Georgia Power Company (Georgia Power) Plant Hammond (Site). The SSL was identified based on statistical evaluations of the groundwater quality data compiled for samples obtained during assessment monitoring sampling activities conducted through March 2021 and reported to the Georgia Environmental Protection Division (GA EPD) on July 30, 2021. This ASD has been prepared pursuant to Georgia regulations per Rule 391-3-4-.10(6) of the Georgia Administrative Code, which incorporates Title 40 Code of Federal Regulations (CFR) Part 257 Subpart D (the Federal CCR Rule), specifically 40 CFR 257.95(g)(3)(ii) by reference, which allows the owner or operator to "demonstrate that a source other than the CCR unit caused the contamination, or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality."

1.2 Summary of ASD

Based on review of available AP-4 data, the SSL of Co reported for HGWC-117 is not associated with a release from AP-4. The detection of elevated Co in HGWC-117 is an isolated occurrence relative to the other AP-4 monitoring wells and may have been affected by pump/sampling issues unrelated to the unit. This ASD provides the following lines of evidence in support of this conclusion.

- Detections of Co above the GWPS of 0.005 mg/L are isolated to HGWC-117.
- There are no statistically significant positive correlations between Co concentrations and concentrations of Appendix III constituents, which are considered indicator parameters for CCR; however, there is a statistically significant negative correlation between Co and TDS, suggesting that these constituents are likely from different sources; if Co were to originate from CCR, it should have statistically significant positive correlations with Appendix III constituents to indicate a similar source (i.e., the CCR unit).

- A new piezometer (i.e., HGWC-117A) was recently installed approximately 30 feet side-gradient of HGWC-117 and screened in the same lithology and elevation range as HGWC-117. Initial groundwater sampling results for HGWC-117A, collected in August and September 2021, indicate very low (i.e., estimated) Co concentrations below the 0.005 mg/L GWPS; this observation indicates that there is no Co plume at this location.
- The interim use of dedicated bladder pumps at the Site between September 2019 and June 2021 may have impacted the sampling results at HGWC-117.

1.3 <u>Site Description</u>

1.3.1 Operations

Plant Hammond is located in Floyd County, Georgia, approximately 10 miles west of Rome. The plant was a four-unit, coal-fired electric generating facility. All four units at Plant Hammond were retired in July 2019 and no longer produce electricity.

AP-4 was commissioned in 1986 as a surface impoundment with a corresponding surface area of approximately 54 acres. Dry ash stacking operations in AP-4 began in 1994 and continued until 2010; AP-4 received both fly ash and bottom ash during this period. AP-4 was capped in place in 2011-2012 in accordance with the GA EPD regulations regarding landfill closures. AP-4 was graded, engineered with drainage, and capped with a geosynthetic clay liner (GCL) and soil cover. Georgia Power plans to perform closure by removal of CCR from AP-4. GA EPD issued CCR Permit No. 057-025D(CCR) for AP-4 on January 27, 2021.

1.3.2 Geology and Hydrogeology

1.3.2.1 Geology

The Site is located within the Great Valley District of the Valley and Ridge Physiographic Province (Valley and Ridge) in northwest Georgia, which is characterized by Paleozoic sedimentary rocks that have been folded and faulted into the ridges and valleys that gave this region its name. Geologic mapping performed at the Site by Petrologic Solutions, Inc. under the direction of Golder (Golder, 2018) indicates that AP-4 is underlain by the lower units of the Cambrian age Conasauga Formation, consisting of mostly calcareous shale. Based on a review of subsurface investigations, the bedrock underneath AP-4 was described as predominantly shale. AP-4 is underlain primarily by five lithologic units: (i) terrace alluvium, (ii) colluvium, (iii) residuum, (iv) partially weathered shale bedrock, and (v) unweathered shale bedrock. HGWC-117 is screened within alluvium material.

Well construction details for the AP-4 compliance monitoring well and piezometer networks are provided in **Table 1**.

1.3.2.2 Hydrogeology

The uppermost aquifer at AP-4 is a regional groundwater aquifer that occurs primarily in the alluvium, colluvium, and residuum, but also to some degree within the weathered and fractured bedrock. Based on observations of alluvium, colluvium, and residuum soil types and horizontal conductivity values, the movement of groundwater in the soil can be characterized as low-to moderate permeability, porous media flow. The groundwater flow in the shallow underlying bedrock is characterized as fracture flow, and due to the preponderance of shale beneath AP-4, is expected to be very low permeability. Groundwater flow direction is generally from north to south.

1.4 Groundwater Monitoring and Basis of Statistically Significant Levels

Georgia Power initiated an assessment monitoring program for groundwater at AP-4 in August 2019. Statistical analyses of the compiled AP-4 groundwater data identified an SSL of Co in HGWC-117 following the March 2021 semiannual assessment monitoring event. HGWC-117 was redeveloped and subsequently sampled on June 23, 2021, to evaluate post-redevelopment groundwater concentrations of Co relative to historical data. A Co concentration of 0.016 mg/L was reported for the June 2021 groundwater sample, which is above the 0.005 mg/L GWPS. HGWC-117 was sampled again during the semiannual assessment monitoring event conducted in August 2021 and again in September 2021, and the reported Co concentrations were 0.017 mg/L and 0.015 mg/L, respectively. The remainder of this ASD further discusses the historical Co data at HGWC-117.

2. ALTERNATE SOURCE DEMONSTRATION

The following subsections provide lines of evidence that the SSL of Co in HGWC-117 is not due to a release from AP-4.

2.1 <u>Isolated Detection of Cobalt</u>

The Co exceedance is an isolated occurrence to HGWC-117; Co is either not detected or detected at an estimated concentration (i.e., J qualified) below the analytical reporting limit (RL) and GWPS of 0.005 mg/L in all other sampled AP-4 wells. The chemical characteristics of background and downgradient compliance monitoring wells for groundwater samples collected since the August 2020 assessment monitoring event (i.e., the past year of sampling events) are summarized in **Table 2**¹ with the sampling locations depicted on **Figure 1**. **Figure 2** depicts the potentiometric surface map and Co concentrations for AP-4 groundwater results reported for the August 2021 event.

2.2 No Statistical Positive Correlation between Co and Appendix III Parameters

Statistical analysis of the historical groundwater data for HGWC-117 indicate that, with one exception discussed below, there are no statistically significant correlations between Co concentrations and concentrations of Appendix III constituents, which are considered indicator parameters of a potential CCR release; if Co were to originate from CCR, it should have statistically significant positive correlations to indicate a similar source of solutes.

Pearson correlation coefficients between Co and Appendix III parameters were calculated for groundwater results obtained from HGWC-117 between August 2016 and September 2021. Highly positive correlations (i.e., correlation coefficient "r" near 1.0) may indicate that two parameter sets are from a common influence, while statistically non-significant low correlations or negative r values indicate that the occurrence of two parameters are unrelated or potentially from different sources. The results of this analysis are summarized in **Table 3**. Note that p-values are also depicted for each correlation coefficient in this table to indicate whether any of these correlations (i.e., positive or negative) are statistically significant. A p-value below 0.05 indicates a statistically significant correlation at the 95% level. As can be seen there are no statistically significant positive correlations between Co and any of the Appendix III parameters,

¹ The analytical laboratory reports associated with Table 2 data reported between August 2020 and July 2021 were provided in the 2021 Annual Groundwater Monitoring and Corrective Action Report submitted to GA EPD on July 30, 2021, in support of the AP-4 assessment monitoring program (Geosyntec, 2021). The laboratory report associated with the August and September 2021 data presented in Table 2 will be submitted in February 2022 with the next semiannual groundwater monitoring report.

suggesting that Co and the indicator parameters are likely from different sources and that Co does not originate from AP-4. Moreover, there is a statistically significant negative correlation between Co and TDS, further demonstrating that these two parameters are likely from different sources.

2.3 <u>Lack of Cobalt Detections Above GWPS in HGWC-117A</u>

A new piezometer (i.e., HGWC-117A) was installed in July 2021 approximately 30 feet side-gradient of HGWC-117 (**Figure 1**). HGWC-117A is screened in the same lithology and elevation interval as HGWC-117; the boring and construction logs for both locations are provided in **Appendix A**. HGWC-117A was installed to evaluate whether elevated Co results in HGWC-117 are attributed to a source other than AP-4.

Available analytical results from sampling HGWC-117A in August and September 2021 are summarized in **Table 2**. The Co results at HGWC-117A are estimated concentrations (i.e., 0.0024 J mg/L [Aug 2021], 0.0011 J mg/L [Sep 2021]) below the RL and the GWPS of 0.005 mg/L. Except for Co concentrations, the results for other Appendix III and IV parameters are similar between HGWC-117 and HGWC-117A. These observations suggest that Co is not attributable to AP-4 and could originate from potential issues with the sampling of HGWC-117 as discussed below in Section 2.4.

2.4 <u>Potential Sampling Issues Related to Use of Dedicated Bladder Pumps</u>

Following the redevelopment of monitoring wells at the Site in March 2019 due to a flooding event that occurred a few weeks earlier, dedicated bladder pumps were installed in wells across the monitoring well network in September 2019, including HGWC-117. The use of the dedicated bladder pump for the sampling events that followed resulted in longer purging times and higher turbidity levels when collecting groundwater samples at HGWC-117. This apparent relationship between using dedicated bladder pumps and turbidity is likely due to an (unexpected) effect of pump compression in alluvial aquifer sediments. This observation can be seen on **Figure 3**, which illustrates turbidity levels recorded at the time of sample collection at HGWC-117.

As of June 2021, most bladder pumps (i.e., except where needed because of groundwater depths) have been removed and AP-4 wells are again sampled using peristaltic pumps where feasible. Turbidity levels correspondingly reduced after June 2021, as indicated on **Figure 3**; the time required to purge the wells prior to collecting a groundwater sample also decreased.

While it is unclear whether the use of bladder pumps might have affected the Co concentrations in HGWC-117, continued monitoring/sampling of this well using peristaltic pumps is recommended. This well will be monitored in conjunction with the adjacent HGWC-117A to obtain sufficient data from HGWC-117A to statistically evaluate groundwater conditions in this area.

3. CONCLUSIONS

The following lines of evidence support the conclusion that the SSL of Co reported for HGWC-117 is attributed to a source other than AP-4 and may have been affected by pump/sampling issues unrelated to the unit.

• Isolated Occurrence

- The Co exceedance in HGWC-117 is an isolated occurrence; Co is not detected or detected at an estimated concentration (i.e., J qualified) below the analytical RL and GWPS of 0.005 mg/L in all other sampled AP-4 wells.
- Lack of Positive Correlation between Co and Appendix III Parameters
 - O Pearson correlation coefficients between Co and Appendix III parameters indicate that there are no statistically significant positive correlations between Co and the Appendix III parameters reported in samples collected from HGWC-117; moreover, there is a statistically significant negative correlation between Co and TDS; this observation suggests different sources for Co and Appendix III parameters.
- Lack of Co Detections Above the GWPS in New Piezometer HGWC-117A
 - O A new piezometer (i.e., HGWC-117A) was recently installed 30 feet side-gradient of HGWC-117 and screened in the same lithology and elevation as HGWC-117; results showed estimated Co detections below the GWPS in HGWC-117A; this observation suggests that there is no release of Co from AP-4 in this area.
- Potential Sampling Issues Due to Bladder Pumps
 - The interim use of dedicated bladder pumps at the Site between September 2019 and June 2021 may have impacted the sampling results at HGWC-117. Bladder pumps have been replaced at all wells that do not require them due to groundwater depths, and continued sampling of HGWC-117 in conjunction with HGWC-117A using peristaltic pumps will allow the collection of additional data to evaluate groundwater conditions in this area.

Based on these findings, Georgia Power proposes to continue monitoring HGWC-117A in parallel to HGWC-117 during routine groundwater sampling events to confirm the findings presented herein. Once sufficient data are available for HGWC-117A to statistically evaluate groundwater conditions in this area, HGWC-117A may replace HGWC-117, if appropriate, as the new compliance well, and Georgia Power will submit a minor permit modification to incorporate HGWC-117A into the groundwater monitoring program at AP-4.

4. REFERENCES

Geosyntec Consultants, 2021. 2021 Annual Groundwater Monitoring and Corrective Action Report, Georgia Power Company Plant Hammond Ash Pond 4 (AP-4). July 2021.

Golder Associates, 2018. *Geologic and Hydrogeologic Report – Plant Hammond*. November 2018.

TABLES

Table 1 Well and Piezometer Network Details Plant Hammond AP-4, Floyd County, Georgia

Well ID	Installation Date	Northing (1)	Easting (1)	Ground Surface Elevation ⁽²⁾ (ft)	Top of Casing Elevation (ft)	Top of Screen Elevation (ft)	Bottom of Screen Elevation (ft)	Well Depth (3) (ft BTOC)	Screened Media
Compliance Monitoring Wel	1								
HGWA-111	8/21/2012	1548834.26	1935222.81	588.79	591.75	558.48	548.48	43.67	Alluvium, Residuum
HGWA-112	8/21/2012	1548885.63	1935647.00	593.46	596.27	566.52	556.52	40.15	Alluvium
HGWA-113	10/2/2012	1548944.62	1935990.09	592.07	594.58	568.87	558.87	36.11	Alluvium
HGWA-47	8/21/2020	1548990.96	1934171.84	577.39	580.33	546.84	536.84	43.74	Partially weathered rock
HGWA-48D	8/20/2020	1548989.39	1934178.15	577.29	580.26	517.54	507.54	72.97	Shale
HGWC-101	8/7/2012	1547725.50	1936369.58	575.91	578.85	551.31	541.31	37.94	Alluvium
HGWC-102	8/7/2012	1547713.50	1936033.33	574.54	577.54	550.51	540.51	37.43	Alluvium
HGWC-103	8/8/2012	1547848.88	1935732.96	577.76	580.79	553.51	543.51	37.68	Alluvium
HGWC-105	8/8/2012	1547855.56	1935110.36	579.08	582.09	547.72	537.72	44.67	Alluvium, Residuum
HGWC-107	8/8/2012	1547909.99	1934442.24	576.43	579.31	551.51	541.51	38.20	Alluvium
HGWC-109	8/15/2012	1548627.41	1934362.77	573.66	576.77	555.81	545.81	31.36	Alluvium
HGWC-117	8/14/2012	1548100.77	1937180.43	579.31	581.98	552.12	542.12	40.26	Alluvium
HGWC-118	10/1/2012	1547980.56	1936946.37	576.52	579.02	548.51	538.51	40.91	Alluvium, Residuum
Piezometer						•			
MW-12	10/21/2014	1547853.78	1937525.46	580.59	583.27	555.84	545.84	37.83	Alluvium, Silty sand, Well- graded sand
GWC-4	8/8/2012	1547898.31	1935398.70	577.73	580.65	543.47	533.47	47.58	Sand, Weathered shale
GWC-6	8/13/2012	1547843.93	1934800.45	578.55	581.63	553.90	543.90	38.13	Alluvium, Silty, fine sand, Sand
GWC-8	8/9/2012	1548167.13	1934342.94	577.13	579.99	549.47	539.47	40.92	Alluvium, Clayey sand, Sand
GWA-14	10/2/2012	1548982.59	1936642.58	589.70	592.14	561.40	551.40	41.14	Alluvium
GWA-15	8/22/2012	1548766.17	1936808.47	588.37	591.56	571.44	561.44	30.52	Alluvium
GWA-16	8/21/2012	1548592.74	1937210.99	579.58	582.55	569.94	559.94	23.01	Alluvium
GWC-19	8/14/2012	1547892.89	1936572.97	576.90	579.83	554.04	544.04	36.19	Sand and gravel
HGWC-117A	7/21/2021	1548082.04	1937157.25	578.85	581.76	551.85	541.85	37.40	Alluvium

Notes:

ft = feet

ft BTOC = feet below top of casing

⁽¹⁾ Coordinates in North American Datum (NAD) 1983, State Plane, Georgia-West, feet.

⁽²⁾ Vertical elevations are in North American Vertical Datum (NAVD) 1988.

⁽³⁾ Total well depth accounts for sump if data provided on well construction logs.

Table 2 Summary of Groundwater Analytical Data Plant Hammond AP-4, Floyd County, Georgia

	Well ID:	HGWA-111	HGWA-111	HGWA-111	HGWA-111	HGWA-112	HGWA-112	HGWA-112	HGWA-112	HGWA-113	HGWA-113	HGWA-113	HGWA-113
Sample Date:		8/25/2020	9/18/2020	3/11/2021	8/12/2021	8/25/2020	9/18/2020	3/12/2021	8/12/2021	8/25/2020	9/22/2020	3/16/2021	8/12/2021
Parameter (1,2)													
	Boron		0.011 J	0.010 J	< 0.0086		0.0080 J	0.0061 J	< 0.0086		0.021 J	0.011 J	< 0.0086
Ħ	Calcium		32.2	53.2	45.4		6.5	6.9	6.9		7.9	8.6	8.4
\bowtie	Chloride		2.6	3.4	2.5		5.2	5.3	4.4		1.5	1.6	1.5
APPENDI	Fluoride	0.052 J	< 0.050	0.057 J	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	0.17	0.16	0.18	0.16
PPE	pH ⁽³⁾	6.70	6.46	7.20	6.67	5.53	5.58	5.60	5.50	5.95	6.10	6.14	6.08
A	Sulfate		1.0	1.5	1.3		< 0.50	0.52 J	< 0.50		5.3	7.7	10.0
	TDS		139	207	157		62.0	56.0	63.0		84.0	99.0	92.0
	Antimony	< 0.00028			< 0.00078	< 0.00028			< 0.00078	< 0.00028			< 0.00078
	Arsenic	< 0.00078	< 0.00078	< 0.00078	< 0.0011	< 0.00078	< 0.00078	< 0.00078	< 0.0011	< 0.00078	< 0.00078	0.0011 J	< 0.0011
	Barium	0.031	0.024	0.037	0.029	0.028	0.025	0.030	0.028	0.030	0.038	0.054	0.033
	Beryllium	0.000047 J	< 0.000046	0.00014 J	< 0.000054	< 0.000046	< 0.000046	0.000054 J	< 0.000054	0.000046 J	0.000099 J	0.00018 J	< 0.000054
	Cadmium	< 0.00012	< 0.00012	< 0.00012	< 0.00011	< 0.00012	< 0.00012	< 0.00012	< 0.00011	< 0.00012	< 0.00012	< 0.00012	< 0.00011
≥	Chromium	0.0013 J	0.00077 J	0.0020 J	< 0.0011	0.0039 J	0.0037 J	0.0045 J	0.0041 J	0.0031 J	0.0046 J	0.0061	< 0.0011
	Cobalt	< 0.00038	< 0.00038	< 0.00038	< 0.00039	< 0.00038	< 0.00038	< 0.00038	< 0.00039	< 0.00038	0.00074 J	0.0013 J	< 0.00039
APPENDIX	Fluoride	0.052 J	< 0.050	0.057 J	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	0.17	0.16	0.18	0.16
PPE	Lead	0.00036 J	0.00026 J	0.0011	< 0.00089	0.00011 J	0.000065 J	0.00017 J	< 0.00089	0.00022 J	0.00096 J	0.0016	< 0.00089
A	Lithium	0.0033 J	0.0021 J	0.0047 J	0.0020 J	< 0.00081	< 0.00081	< 0.00081	< 0.00073	0.0014 J	0.0018 J	0.0026 J	0.00094 J
	Mercury	< 0.000078			< 0.000078	< 0.000078			0.00011 J	< 0.000078			< 0.000078
	Molybdenum	< 0.00069			< 0.00074	< 0.00069			< 0.00074	< 0.00069			< 0.00074
	Comb. Radium 226/228	0.570 U	0.828 U	0.354 U	0.532 U	0.0182 U	1.15 U	0.164 U	0.223 U	0.587 U	0.551 U	0.559 U	0.312 U
	Selenium	< 0.0016			< 0.0014	< 0.0016			< 0.0014	< 0.0016			0.0023 J
	Thallium	< 0.00014			< 0.00018	< 0.00014			< 0.00018	< 0.00014			< 0.00018

Notes

- -- = Parameter was not analyzed
- J = Indicates the parameter was estimated and detected between the method detection limit (MDL) and the reporting limit (RL)
- < = Indicates the parameter was not detected above the analytical MDL
- TDS = Total dissolved solids
- U = Indicates the parameter was not detected above the analytical minimum detectable concentration (MDC) (Specific to combined radium 226/228)
- (1) Appendix III/IV parameter per 40 CFR 257 Subpart D. Parameters are reported in units of milligrams per liter (mg/L), except for pH reported as s.u. (standard units) and combined radium reported as picocuries per liter (pCi/L).
- (2) Metals were analyzed by EPA Method 6010D/6020B, mercury was analyzed by EPA method 7470A, anions were analyzed by EPA Method 300.0, TDS was analyzed by SM2540C-2011.
- (3) The pH value presented was recorded at the time of sample collection in the field.
- (4) Monitoring wells HGWA-47, HGWA-48D, and HGWC-102 were analyzed for the complete list of Appendix III and Appendix IV constituents to establish groundwater conditions.

Table 2
Summary of Groundwater Analytical Data
Plant Hammond AP-4, Floyd County, Georgia

	Well ID:	HGWA-47 ⁽⁴⁾	HGWA-47 ⁽⁴⁾	HGWA-47 ⁽⁴⁾	HGWA-47 ⁽⁴⁾	HGWA-47 ⁽⁴⁾	HGWA-47	HGWA-48D ⁽⁴⁾	HGWA-48D ⁽⁴⁾	HGWA-48D ⁽⁴⁾	HGWA-48D ⁽⁴⁾	HGWA-48D ⁽⁴⁾	HGWA-48D
	Sample Date:	9/18/2020	11/10/2020	12/15/2020	1/19/2021	3/12/2021	8/12/2021	9/18/2020	11/11/2020	12/15/2020	1/19/2021	3/12/2021	8/12/2021
	Parameter (1,2)												
	Boron	0.0082 J	0.0064 J	< 0.0052	0.015 J	0.0067 J	< 0.0086	0.015 J	0.014 J	0.0083 J	0.015 J	0.012 J	0.012 J
E	Calcium	62.2	73.3	72.5	72.5	69.2	71.2	51.8	61.3	61.3	58.9	57.5	59.5
×	Chloride	2.7	2.7	2.9	2.8	2.7	2.3	2.6	2.6	2.7	2.7	2.6	2.2
P P	Fluoride	0.067 J	0.065 J	0.064 J	0.057 J	0.062 J	< 0.050	0.098 J	0.083 J	0.081 J	0.079 J	0.085 J	0.064 J
APPENDI	pH ⁽³⁾	7.54	7.34	7.27	7.32	7.52	7.38	7.50	7.40	7.39	7.40	7.51	7.44
F	Sulfate	3.5	2.3	2.4	2.6	1.9	1.4	9.5	4.5	4.2	3.9	4.7	4.3
	TDS	195	229	233	199	217	212	224	221	239	224	204	234
	Antimony	< 0.00028	< 0.00028	< 0.00028	< 0.00028		< 0.00078	0.00038 J	0.00031 J	< 0.00028	0.00042 J		< 0.00078
	Arsenic	< 0.00078	< 0.00078	< 0.00078	< 0.00078	< 0.00078	< 0.0011	< 0.00078	< 0.00078	< 0.00078	< 0.00078	0.0018 J	0.0013 J
	Barium	0.026	0.027	0.027	0.029	0.030	0.028	0.077	0.078	0.091	0.095	0.10	0.10
	Beryllium	< 0.000046	< 0.000046	< 0.000046	< 0.000046	< 0.000046	< 0.000054	< 0.000046	< 0.000046	< 0.000046	< 0.000046	< 0.000046	< 0.000054
	Cadmium	< 0.00012	< 0.00012	< 0.00012	< 0.00012	< 0.00012	< 0.00011	< 0.00012	< 0.00012	< 0.00012	< 0.00012	< 0.00012	< 0.00011
≥	Chromium	0.0039 J	< 0.00055	< 0.00055	< 0.00055	< 0.00055	< 0.0011	< 0.00055	< 0.00055	0.0013 J	0.0015 J	0.00062 J	< 0.0011
izi	Cobalt	0.00049 J	< 0.00038	< 0.00038	< 0.00038	< 0.00038	< 0.00039	< 0.00038	< 0.00038	0.00039 J	< 0.00038	< 0.00038	< 0.00039
PPENDE	Fluoride	0.067 J	0.065 J	0.064 J	0.057 J	0.062 J	< 0.050	0.098 J	0.083 J	0.081 J	0.079 J	0.085 J	0.064 J
PPE	Lead	< 0.000036	< 0.000036	< 0.000036	0.000038 J	< 0.000036	< 0.00089	< 0.000036	< 0.000036	0.00015 J	0.000056 J	0.000048 J	< 0.00089
A	Lithium	0.0026 J	0.0028 J	0.0026 J	0.0030 J	0.0031 J	0.0029 J	0.0051 J	0.0036 J	0.0045 J	0.0032 J	0.0031 J	0.0037 J
	Mercury	< 0.000078	< 0.000078	< 0.000078	< 0.000078		0.000081 J	< 0.000078	< 0.000078	< 0.000078	< 0.000078		0.00018 J
	Molybdenum	0.0015 J	< 0.00069	< 0.00069	< 0.00069		< 0.00074	0.0026 J	0.0012 J	0.00097 J	0.0018 J		0.0019 J
	Comb. Radium 226/228	1.11 U	0.234 U	0.529 U	0.176 U	0.000 U	0.462 U	1.50 U	0.776 U	1.23 U	1.35 U	0.829 U	0.274 U
	Selenium	< 0.0016	< 0.0016	< 0.0016	< 0.0016		< 0.0014	< 0.0016	< 0.0016	< 0.0016	< 0.0016		< 0.0014
	Thallium	< 0.00014	< 0.00014	< 0.00014	< 0.00014		< 0.00018	< 0.00014	< 0.00014	< 0.00014	< 0.00014		< 0.00018

Table 2
Summary of Groundwater Analytical Data
Plant Hammond AP-4, Floyd County, Georgia

	Well ID:	HGWC-101	HGWC-101	HGWC-101	HGWC-101	HGWC-102 ⁽⁴⁾	HGWC-102 ⁽⁴⁾	HGWC-102 ⁽⁴⁾	HGWC-102	HGWC-103	HGWC-103	HGWC-103	HGWC-103	HGWC-105	HGWC-105	HGWC-105	HGWC-105
	Sample Date:	8/27/2020	9/24/2020	3/17/2021	8/16/2021	8/27/2020	9/24/2020	3/17/2021	8/13/2021	8/27/2020	9/24/2020	3/18/2021	8/16/2021	8/27/2020	9/24/2020	3/18/2021	8/13/2021
	Parameter (1,2)																
	Boron		0.10	0.13	0.13	2.7	2.9	2.7	2.4		2.2	2.4	3.2		1.2	1.5	1.2
шх	Calcium		20.3	21.8	22.8	106	120	111	119		91.3	83.7	124		92.9	97.7	102
	Chloride		5.5	5.5	5.4	7.1	7.2	6.9	6.0		6.0	6.2	10.4		3.9	4.3	3.7
Ω̈́	Fluoride	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
J. D.E.	pH ⁽³⁾	5.32	5.48	5.41	5.40	5.70	5.82	5.78	5.45	5.82	5.60	5.51	5.59	6.45	6.63	6.57	6.44
A	Sulfate		97.0	107	72.1	382	370	332	248		293	286	354		177	196	142
	TDS		170	213	206	663	696	626	647		517	465	672		411	410	441
	Antimony	< 0.00028			< 0.00078	< 0.00028	< 0.00028		< 0.00078	< 0.00028			< 0.00078	< 0.00028			< 0.00078
	Arsenic	< 0.00078	< 0.00078	< 0.00078	< 0.0011	< 0.00078	< 0.00078	< 0.00078	< 0.0011	< 0.00078	< 0.00078	< 0.00078	< 0.0011	< 0.00078	< 0.00078	< 0.00078	< 0.0011
	Barium	0.045	0.041	0.040	0.037	0.028	0.029	0.031	0.026	0.038	0.036	0.042	0.037	0.068	0.075	0.082	0.073
	Beryllium	0.000057 J	0.000048 J	0.000059 J	< 0.000054	< 0.000046	< 0.000046	< 0.000046	< 0.000054	0.000050 J	0.000088 J	0.000061 J	< 0.000054	< 0.000046	< 0.000046	< 0.000046	< 0.000054
	Cadmium	0.00019 J	0.00014 J	< 0.00012	0.00015 J	0.00038 J	0.00032 J	0.00094	0.00069	0.00082 J	0.00076 J	0.00068	0.00081	< 0.00012	< 0.00012	< 0.00012	< 0.00011
≥	Chromium	< 0.00055	< 0.00055	0.00075 J	< 0.0011	< 0.00055	< 0.00055	< 0.00055	< 0.0011	0.00069 J	0.00081 J	0.0030 J	< 0.0011	< 0.00055	0.00064 J	0.00058 J	< 0.0011
N X	Cobalt	0.0027 J	0.0021 J	0.0023 J	0.0026 J	0.0010 J	0.0011 J	0.0012 J	0.00085 J	0.0019 J	0.0019 J	0.0021 J	0.0022 J	< 0.00038	0.00044 J	0.00045 J	< 0.00039
R	Fluoride	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
E E	Lead	< 0.000036	< 0.000036	< 0.000036	< 0.00089	< 0.000036	< 0.000036	< 0.000036	< 0.00089	0.00018 J	0.00028 J	0.00024 J	< 0.00089	< 0.000036	0.000049 J	0.000058 J	< 0.00089
A	Lithium	< 0.00081	< 0.00081	< 0.00081	< 0.00073	0.0011 J	0.0011 J	0.0012 J	0.0011 J	0.0016 J	0.0017 J	0.0018 J	0.0016 J	0.0037 J	0.0038 J	0.0042 J	0.0038 J
	Mercury	< 0.000078			0.000099 J	< 0.000078	< 0.000078		0.00010 J	< 0.000078			0.00027	< 0.000078			0.00022
	Molybdenum	< 0.00069			< 0.00074	< 0.00069	< 0.00069		< 0.00074	< 0.00069			< 0.00074	< 0.00069			< 0.00074
	Comb. Radium 226/228	0.109 U	0.625 U	0.248 U	0.667 U	1.17 U	1.42	0.401 U	0.828 U	0.370 U	0.804 U	0.274	0.493 U	0.416 U	1.11 U	0.252 U	0.513 U
	Selenium	< 0.0016			< 0.0014	< 0.0016	< 0.0016		< 0.0014	< 0.0016			< 0.0014	< 0.0016			< 0.0014
	Thallium	< 0.00014			< 0.00018	< 0.00014	< 0.00014		< 0.00018	< 0.00014			< 0.00018	< 0.00014			< 0.00018

Table 2
Summary of Groundwater Analytical Data
Plant Hammond AP-4, Floyd County, Georgia

	Well ID:	HGWC-107	HGWC-107	HGWC-107	HGWC-107	HGWC-109	HGWC-109	HGWC-109	HGWC-109	HGWC-117	HGWC-117	HGWC-117	HGWC-117	HGWC-117	HGWC-117	HGWC-117A	HGWC-117A
	Sample Date:	8/27/2020	9/24/2020	3/18/2021	8/13/2021	8/27/2020	9/25/2020	3/17/2021	8/13/2021	8/27/2020	9/25/2020	3/19/2021	6/23/2021	8/19/2021	9/27/2021	8/12/2021	9/27/2021
	Parameter (1,2)																
	Boron		0.88	0.92	0.73		0.28	0.26	0.24		1.1	1.5	1.0	0.78	0.67	0.34	0.30
	Calcium		55.4	56.0	57.8		48.5	37.3	43.5		72.8	87.3	56.5	40.9	37.5	50.7	47.2
\bowtie	Chloride		3.5	3.2	3.1		4.1	4.7	4.0		16.1	24.9	8.8	4.0	3.4	6.3	4.5
IQN	Fluoride	< 0.050	0.064 J	< 0.050	< 0.050	0.094 J	0.091 J	0.089 J	0.086 J	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
- SPE	pH ⁽³⁾	6.09	6.11	6.20	6.11	6.64	6.79	6.55	6.71	5.92	6.01	6.14	5.72	6.04	5.66	6.27	6.14
∥ ₹	Sulfate	-	126	128	112		24.7	28.3	24.4		146	162	125	108	104	64.6	69.7
	TDS		253	255	291		188	171	189		340	371	325	253	242	256	223
	Antimony	< 0.00028			< 0.00078	< 0.00028			< 0.00078	< 0.00028				< 0.00078	< 0.00078	< 0.00078	< 0.00078
	Arsenic	< 0.00078	< 0.00078	< 0.00078	< 0.0011	0.0011 J	0.0017 J	0.0019 J	0.0019 J	< 0.00078	< 0.00078	< 0.00078		< 0.0011	< 0.0011	< 0.0011	< 0.0011
	Barium	0.034	0.039	0.041	0.033	0.083	0.085	0.077	0.080	0.047	0.050	0.058		0.041	0.038	0.079	0.062
	Beryllium	< 0.000046	< 0.000046	< 0.000046	< 0.000054	< 0.000046	< 0.000046	< 0.000046	< 0.000054	0.000049 J	0.000066 J	0.000081 J		0.000056 J	< 0.000054	< 0.000054	< 0.000054
	Cadmium	< 0.00012	< 0.00012	< 0.00012	< 0.00011	< 0.00012	< 0.00012	< 0.00012	< 0.00011	0.00080 J	0.00089 J	0.0010		0.0012	0.00098	0.00016 J	< 0.00011
_ ≥	Chromium	< 0.00055	< 0.00055	< 0.00055	< 0.0011	< 0.00055	< 0.00055	< 0.00055	< 0.0011	0.00057 J	0.00067 J	0.0010 J		< 0.0011	< 0.0011	< 0.0011	< 0.0011
	Cobalt	< 0.00038	< 0.00038	< 0.00038	< 0.00039	0.00086 J	0.0010 J	0.0030 J	0.0011 J	0.011	0.011	0.011	0.016	0.017	0.015	0.0024 J	0.0011 J
	Fluoride	< 0.050	0.064 J	< 0.050	< 0.050	0.094 J	0.091 J	0.089 J	0.086 J	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
■ PPE	Lead	< 0.000036	0.00034 J	0.000091 J	< 0.00089	< 0.000036	< 0.000036	< 0.000036	< 0.00089	0.00014 J	0.00019 J	0.00038 J		< 0.00089	< 0.00089	< 0.00089	< 0.00089
A	Lithium	< 0.00081	0.00098 J	0.0011 J	0.00084 J	0.0011 J	0.0010 J	< 0.00081	< 0.00073	0.0024 J	0.0031 J	0.0035 J		0.0017 J	0.0016 J	0.0036 J	0.0035 J
	Mercury	< 0.000078			0.000084 J	< 0.000078			0.000080 J	< 0.000078				0.0003	< 0.000078	0.000094 J	< 0.000078
	Molybdenum	< 0.00069			< 0.00074	< 0.00069			< 0.00074	< 0.00069				< 0.00074	< 0.00074	< 0.00074	< 0.00074
	Comb. Radium 226/228	0.264 U	0.576 U	0.145 U	0.815 U	0.989 U	0.584 U	0.556 U	0.794 U	0.193 U	0.155 U	0.0846 U		0.155 U	(pending data)	0.124 U	(pending data)
	Selenium	< 0.0016			< 0.0014	< 0.0016			< 0.0014	< 0.0016				< 0.0014	< 0.0014	< 0.0014	< 0.0014
	Thallium	< 0.00014			< 0.00018	< 0.00014			< 0.00018	< 0.00014				< 0.00018	< 0.00018	< 0.00018	< 0.00018

Table 2
Summary of Groundwater Analytical Data
Plant Hammond AP-4, Floyd County, Georgia

	Well ID:	HGWC-118	HGWC-118	HGWC-118	HGWC-118
	Sample Date:	8/26/2020	9/28/2020	3/18/2021	8/13/2021
	Parameter (1,2)	0/20/2020	<i>7/20/2020</i>	3/10/2021	0/13/2021
	Boron		0.65	0.81	0.59
н	Calcium		88.9	85.4	84.3
хш	Chloride		4.0	4.3	4.0
ΙΩΣ	Fluoride	0.072 J	0.078 J	0.079 J	0.075 J
APPENDIX	pH ⁽³⁾	6.97	7.03	7.11	6.78
AP	Sulfate		86.0	87.8	75.1
	TDS		332	328	336
	Antimony	< 0.00028			< 0.00078
	Arsenic	< 0.00078	< 0.00078	0.0010 J	< 0.0011
	Barium	0.056	0.046	0.067	0.043
	Beryllium	< 0.000046	< 0.000046	0.000093 J	< 0.000054
	Cadmium	< 0.00012	< 0.00012	< 0.00012	< 0.00011
>	Chromium	0.00098 J	0.0017 J	0.0021 J	< 0.0011
APPENDIX IV	Cobalt	0.00061 J	0.00048 J	0.0012 J	< 0.00039
Q	Fluoride	0.072 J	0.078 J	0.079 J	0.075 J
PPE	Lead	0.00036 J	0.00022 J	0.00088 J	< 0.00089
A	Lithium	0.0028 J	0.0022 J	0.0029 J	0.0017 J
	Mercury	< 0.000078			0.000081 J
	Molybdenum	< 0.00069			< 0.00074
	Comb. Radium 226/228	1.19	0.613 U	0.778 U	0.228 U
	Selenium	< 0.0016			< 0.0014
	Thallium	< 0.00014			< 0.00018

Table 3

Pearson's Correlation Coefficients between Cobalt and Appendix III Concentrations Reported in HGWC-117

Plant Hammond AP-4, Floyd County, Georgia

Sample Date (1)	Cobalt ⁽²⁾	Boron	Calcium	Chloride	Fluoride	Sulfate	TDS	pН
8/31/2016	0.0035	0.821	63.4	7.1	0.09	150	381	6.07
10/20/2016	0.0045	0.956	64.4	7.7	0.11	150	319	6.00
1/27/2017	0.0041	0.99	68.6	7.8	0.28	150	407	6.20
5/23/2017	0.0071	0.438	32	3.6	0.01	110	258	5.27
8/10/2017	0.0031	0.821	78.9	5.9	0.1	140	359	6.27
11/14/2017	0.0062	0.536	46.9	4	0.3	110	310	5.40
6/7/2018	0.0083	0.5	37.7	3.6	0.029	103	223	5.29
10/3/2018	0.005	0.85	68	7.6	0.029	169	337	6.08
10/22/2019	0.0064	1	70.9	12.1	0.042	133	348	6.17
3/24/2020	0.0087	1	68	12.5	0.05	129	331	5.99
9/25/2020	0.011	1.1	72.8	16.1	0.05	146	340	6.01
3/19/2021	0.011	1.5	87.3	24.9	0.05	162	371	6.14
8/19/2021	0.017	0.78	40.9	4	0.05	108	253	6.04
9/27/2021	0.015	0.67	37.5	3.4	0.05	104	242	5.66
Pearson Correlation (r) (3)		0.057	-0.373	0.093	-0.405	-0.476	-0.573	-0.210
p-value ⁽⁴⁾		0.847	0.189	0.752	0.120	0.086	0.032	0.434

Notes:

TDS = Total dissolved solids

- (1) Cobalt was not analyzed for during the detection monitoring events conducted in April and June 2019; Appendix III parameters were not analyzed for during the initial annual assessment monitoring events conducted August 2019 and August 2020. The table presents data for events in which a complete dataset of Co and Appendix III parameters was available.
- (2) Results reported in milligrams per liter (mg/L), except for pH which is reported in standard units (s.u.).
- (3) A r value near 1.0 indicates a highly positive correlation, and may indicate the two parameter sets are from a common influence, while statistically a lower or negative r value may indicate that the occurrence of two parameter sets are unrelated.
- (4) Statistically significant correlations are bold. p-value ≤ 0.05 indicate the correlation is statistically significant.

FIGURES

APPENDIX A Boring and Well Construction Logs for HGWC-117 and HGWC-117A

TEST BORING RECORD

BORING NO.: HGWC-117

GEORGIA POWER PLANT HAMMOND ASH POND #4 ROME, GEORGIA

WELL CONSTRUCTION LOG

CLIENT: SOUTHERN COMPA	NY		WELL ID:
DRILLED BY: Chad Odom (S&ME)			HGWC-117
RIG TYPE: CME-55	DRILLING METHOD: 4.25" HOLLOW STEM	AUGERS	
DATE CONSTRUCTED: August 14,	2012	DEPTH	FLEV/ATION
		FEET	ELEVATION
		FLLI	FEET
Locking Hinged Top			
I [TOP OF RISER	2.96	581.98
1/4-inch Vent	Cap Type: Plastic Locking		
•			
1/4-inch Weep Hole		0.20	579.31
4.50.4.50	GROUND SURFACE	0.29	579.02
4-ft x 4-ft concrete pad	GROUND SURFACE	0.0	579.02
	PROTECTIVE CASING		
	SIZE: 4" x 4" x 5'		
	TYPE: STAINLESS STEEL LOCKING		
		4 -	577.50
**	BOTTOM OF PROTECTIVE CASING	-1.5	577.52
	BACKFILL MATERIAL		
Water Level @	TYPE: Portland Cement Grout		
time of completion: -18.5 feet	AMOUNT: 41 gallons		
	DIGED CASING		
	RISER CASING DIA: 2-inch		
Delayed water level N/A	TYPE: Schedule 40 PVC		
Date and time: N/A	JOINT TYPE: Flush Threaded		
	TODOSCAL	21.7	557.32
	TOP OF SEAL	-21.7	337.32
	TYPE: 3/8-inch coated bentonite pellets		
	5-gal buckets		
	AMOUNT: 50 lbs		
	PLACEMENT: 3.2 feet TOP OF FILTER PACK	-24.9	554.12
	FILTER PACK	24.5	
	TYPE: DSI Sand - 1A (20/30)		
	Drillers Services, Inc.		
	AMOUNT: 6 bags PLACEMENT: 12.4 feet		
	PLACEMENT: 12.4 feet		
	BOTTOM OF RISER/TOP OF SCREEN	-26.9	552.12
	SCREEN (10.0')		
	DIA: 2-inch		
	TYPE: Schedule 40 PVC Prepack OPENING WIDTH: 0.01-inch		
	OPENING WIDTH: 0.01-IIICH OPENING TYPE: Slotted		
	SLOT SPACING: 0.25-inch		
	SLOT LENGTH: 1.5-inch		542.12
Flush-threaded end cap	BOTTOM OF SCREEN	-36.9	342.12
(0.4')	BOTTOM OF CASING	-37.3	541.72
HOLE	EDIA: 6.75"		
			in NAVO 99

SCS MONITORING WELLS MW-51 AND HGWC-117A GPJ ACP GINT LIBRARY CH.GLB 9/9/2